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Abstract In coalbeds and shales, gas transport and storage are important for accurate
prediction of production rates and for the consideration of subsurface greenhouse gas seques-
tration. They involve coupled fluid phenomena in porous medium including viscous flow,
diffusive transport, and adsorption. Standard approach to describe gas–matrix interactions is
deterministic and neglects the effects of local spatial heterogeneities in porosity and material
content of the matrix. In this study, adopting weak-noise and mean-field approximations and
using a statistical approach in spectral domain, matrix heterogeneity effects are investigated
in the presence of non-equilibrium adsorption with random partition coefficient. It is found
that the local heterogeneities can generate non-trivial transport and kinetic effects which
retard gas release from the matrix and influence the ultimate gas recovery adversely. Macro-
transport shows 1/ [1 + NPe/(1 + NPe)] dependence on the Péclet number, and persists at
the diffusive ultra-low permeability limit. Macro-kinetics is directly related to Thiele modu-
lus by the following expression: NT h/(1 + 2NPe). It leads to trapping of gas in the adsorbed
phase during its release from the matrix, and to an adsorption threshold during the gas uptake
by the matrix. Both effects are proportional to the initially available adsorbed gas amount and
becomes more pronounced with the increasing variance of the porosity field. Consequently,
a new upscaled deterministic gas mass balance is proposed for practical purposes. Numerical
results are presented showing free and adsorbed gas distributions and fractional gas sorp-
tion curves for unipore coal matrix exhibiting Gaussian porosity distribution. This study is
a unique approach for our further understanding of the coalbeds and gas shales, and it is
important for the development of sound numerical gas production and sequestration models.
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List of Symbols

B0 Absolute coal permeability (cm2)
C Free gas concentration (mol/cc pore)
Cµ Adsorbed gas concentration (mol/cc solid)
Cµs Maximum adsorbed gas concentration (mol/cc solid)
D Molecular diffusion coefficient (cm2/s)
D Apparent diffusion coefficient (cm2/s)
E Adsorbate adsorbent interaction energy (J/mol)
g Average free gas concentration (mol/cc)
K Partition (distribution) coefficient (fraction)
kf Gas adsorption rate coefficient (1/s)
kr Gas desorption rate coefficient (1/s)
kr∞ Gas desorption rate constant at zero energy level (1/s)
R Universal gas constant (J K−1 mol−1)
r Pore half width (cm)
t Time coordinate (s)
T Temperature (K)
x Space coordinate (cm)

Greek Symbols

α Effective drift velocity (m/s)
φ Porosity (fraction)
� Solid-to-bulk volume ratio (fraction)
σ 2

f Variance of porosity fluctuations
µ Gas viscosity (kg/cm s)
λ Porosity correlation length (cm)

1 Introduction

Production from coalbeds and shale gas reservoirs make up nearly 15% of the total annual nat-
ural gas supply in the United States. Many other countries currently investigate the potential
of these unconventional resources. Australia, Canada, China, and India have commercial pro-
jects on coal gas production, while others identify new shale gas resources as they consider
the incremental shale gas production in the existing reservoir. These natural gas resources
are estimated to exceed 25,000 Tscf globally and, under the projected energy portfolio, they
are predicted to play an important role on energy supply (Jenkins and Boyer 2008).

Despite their commercial importance, exploitation of these resources raises technological
challenges. Gas well productivities are influenced primarily by low-permeable nature of the
reservoir formation. Porosity and absolute permeability of the matrices are significantly less
than those belong to the conventional gas reservoirs, taking values typically in the range
of a millidarcy in the producing areas. In addition, due to large internal surface areas of the
matrices, coalbeds and gas shale formations containing significant amounts of organic matter
(e.g., Devonian shales) retain a large portion of natural gas at an adsorbed state. The latter is
a physical mechanism which plays an important role during the estimation of gas-in-place
and the future reservoir predictions (King 1990).
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Tight nature of the matrices and their ability to retain the gas at an adsorbed state also
make these environments important gas trapping and storage locations. Coalbeds are consid-
ered to be one of the targeted subsurface environments for the greenhouse gas sequestration.
Although no large-scale projects currently exist, field tests are being performed for CO2

injection and enhanced coalbed methane production, i.e., CO2–ECBM. Gas shales are also
likely to play a role in sequestration similar in magnitude to coals in near future (Nuttall
2005).

A vibrant and fast-growing literature exists related to various aspects of coals and gas
shales, including operational (e.g., drilling, completion, and production) and technological
challenges. The latter mainly involves difficulties in formation evaluation/characterization,
in modeling gas–matrix-fracture phenomena, and in developing reliable reservoir simula-
tors. In times, these studies directly point to an inability to accurately predict the ultimate gas
recovery and to explain high variability in gas well productivity, which are common to nearly
all coalbed and shale gas reservoirs. Recently, Weida et al. (2005) quantified such variability
using cumulative gas production data of a set of wells drilled and completed in essentially the
same way (open-hole) in a small area in a single coal seam. Experience with the conventional
resources prescribes that the observed variability in production is due to changes in effective
reservoir permeability: under initial equilibrium conditions, since the natural gas is likely to
be homogeneously distributed in the microstructure of the matrices, these variations should
be due to spatial and temporal changes in permeability. This point of view emphasizes the
existence of a dense network of fractures with a dynamic permeability field which changes
in time due to opening and closing of fractures as the places of dominant transport for gas
production. It may, however, overlook the influence of finer scale heterogeneities intrinsic
to the matrices surrounded by those fractures and it may neglect their roles on the initial
distribution of gas, and on the production. Now, it is recognized that coals and shales are in
fact complex composite materials consisting of a large group of minerals and organic matter
exhibiting an intricate pore structure even within the length of a meter. Applying X-ray com-
puterized tomography (CT) imaging, Karacan (2003) recently quantified spatial distribution
of micro-lithotypes in coal samples in the order of 1 cm in diameter. Further, he argued that
equilibrium and non-equilibrium dynamics of gas adsorption process needs to be investigated
carefully to understand gas–solid interactions and transport phenomena in the matrices.

The purpose of this article is to consider local phenomena in a heterogeneous matrix using
a theoretical approach. We therefore first develop the means to appropriately quantify the
local matrix heterogeneities and then to up-scale (or homogenize) the gas flow, diffusive
transport, and adsorption processes over the matrix body. Hence, our study here builds on
the premise that the local gas behavior in the matrix is simultaneously controlled by the
gas sorption rates, viscous and diffusive gas mass fluxes. Although the matrix exhibits local
variations in the pore structure, we consider that these local variations are weak and that the
porous medium still maintains a meaningful average porosity and a constant permeability
values. We then investigate analytically and numerically the effects of porosity fluctuations,
in particular, and the related material property variations on the mechanisms of transport
and storage. For the investigation, initially, we locally describe mass conservation for a gas
component (for which the matrix has a certain adsorption capacity, e.g., methane) in homoge-
neous media characterized by a time-independent porosity in space–time continuum. Next,
the classical perturbation theory is employed to the governing equations where the structural
and chemical variations are introduced in terms of fluctuating (random) porosity and partition
coefficient, respectively. The analytical part of our study is concerned with the description
and analysis of the theoretical problem using the mean and perturbed governing equations in
the Laplace–Fourier domain. The mean equations are, in fact, upscaled governing equations,
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which include cross-correlations between porosity and dependent variables, reflecting the
influences of the introduced small-scale porosity fluctuations on the adsorbed and free gas
concentrations and on the Fickian-type diffusivity. Obtaining explicit expressions for the lat-
ter quantities are the most critical part of any work based on perturbations and noise analysis
and, here, they are examined using the perturbed governing equations in the spectral domain.
Similar approaches have been considered by several authors; see, for example, textbooks by
Forster (1977) and Gelhar (1993), or publications by J.H. Cushman’s group (e.g., Hu et al.
1995 and, recently, by L’Heureux (2004). Second part of this study involves numerical anal-
ysis of the upscaled governing equations describing gas adsorption and transport behavior
in heterogeneous coal matrix. For this purpose, gas release from a matrix is considered and
presented as a onedimensional initial/boundary value problem. Results showing the influence
of heterogeneities on gas release rates are demonstrated using fractional gas recovery curves
and comparing with the homogeneous case.

2 Local Gas Behavior in the Matrix—Homogeneous Case

2.1 Kinetics of Gas Adsorption in Porous Media

Perhaps the earliest discussion on the existence of local conditions which require kinetics
description of adsorption in coals and shales figures in King (1990), who suggested that
the assumption of equilibrium adsorption may be appropriate only in reservoirs undergoing
rapid desorption, such as in the vicinity of producing wells. In the latter case, an explicit alge-
braic equation, i.e., an equilibrium adsorption isotherm, describing a relationship between
the adsorbed and free gas amounts is introduced:

Cµ = f (C, a, b . . .)

where a and b are model parameters. Among several models considered, Henry’s law iso-
therm is the simplest one which linearly relates the adsorbed and free gas concentrations, i.e.,
Cµ = aC . It is not commonly used for the gas–matrix systems due to its linearity, although,
it has found some applications in theoretical description of complex systems (Ruckenstein
et al. 1971; Smith and Williams 1984; Alvarado et al. 1998) due to its simplicity. Instead,
the Langmuir isotherm has been extensively considered: Cµ = abC/(1 + aC). In this case,
a is the Langmuir equilibrium constant and b represents complete monolayer coverage of
the open surface by the gas molecules. The relationship is derived from both kinetic and
statistical mechanical points of view under the assumptions of adsorption on a fixed number
of sites that are energetically equivalent, and of absence of lateral interactions between the
adsorbed molecules on neighboring sites. It represents a special form of the multi-layer BET
adsorption equation, Cµ = abC/[(1 − b)(1 + b(C − 1)]. There have been several attempts
to develop isotherms based on the so-called pore filling theory (Dubinin 1966), a common
form of which is the Dubinin–Astakhov equation Cµ = φ exp[−ab ln(1/b)]/(1 −φ), where
now b appears as a structural parameter for the surface heterogeneity.

Based on experimental observations using electron microscopy or from the analysis of
the adsorption equilibrium data or the observation of the desorption behavior, Do and Wang
(1998) argued that simple equilibrium isotherms may not represent the dynamics between
the free and adsorbed phases in low-porosity heterogeneous materials such as activated car-
bon. They argued that the semi-liquid adsorption layer on the internal surfaces of the porous
structure is in fact quite heterogeneous, leading to desorption time scales that are longer
than the characteristic adsorption time. Hence, the desorption curve often exhibits a long
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tail, indicating the presence of high-energy sites releasing the adsorbed molecules at a much
lower rate. Thus, although commonly used, the assumption of instantaneously available gas
at the pore walls may not be suitable. Instead, ideally, the use of an adsorption kinetics model
with finite time scales for both adsorption and desorption rates is desired.

When single-component sorption rates are considered, it is common to assume that sorp-
tion follows the so-called Langmuir kinetics with adsorption and desorption rates described
as follows:

Rads = kaC(Cµs − Cµ) (1)

Rdes = kdCµ (2)

where the rates are in moles per unit volume of adsorbed gas per unit time with the adsorption
and desorption rate coefficients, ka and kd, respectively. These coefficients are a measure of
the rates of collision and desorption of gas molecule to the available adsorption sites and are
commonly considered to be the functions of interaction energy, E , between the gas molecules
and the solid sites. The difference between the adsorption and desorption rates gives the net
rate:

Rnet = ka(Cµs − Cµ)C − kdCµ (3)

Consequently, in the absence of a transport mechanism of the adsorbed gas (e.g., surface
diffusion), the rate of interchange between the adsorbed and free gas can be described using
the following mass balance:

∂Cµ

∂t
= ka(Cµs − Cµ)C − kdCµ (4)

Note that, when equilibrium is reached, Rnet = 0 is observed. Hence, Langmuir equilibrium
isotherm is obtained with a = ka/kd, b = Cµs . Others used a linear approach for the adsorp-
tion kinetics of fluids in porous media, see, for example, Brusseau et al. (1991), Hu et al.
(1995) and Alvarado et al. (1998), assuming that the adsorption rate is independent of the
adsorbed gas concentration. Hence, the following is suggested:

Rads = ka(Cµs − Cµ)C ∼= kf C (5)

Rdes = krCµ (6)

Rate of the interchange between the adsorbed and free gas phases then becomes:

∂Cµ

∂t
= kf C − krCµ (7)

which can be written in the following form

∂Cµ

∂t
= kr(K C − Cµ) (8)

Here, K = kf/kr is often referred to as the equilibrium partition (or, distribution) coefficient,
and kf and kr are the coefficients of forward and reverse adsorption kinetics, respectively.
When the equilibrium is reached, Eq. 8 reduces to Henry’s law isotherm where a is defined
as K .

Figure 1 compares numerical results of gas release from a matrix block using the linear
kinetics and equilibrium adsorption models (there will be further discussion on the nature of
partial differential equations solved later on). It shows the two linear isotherms constructed
by periodically measuring the free and adsorbed gas concentrations in discreet time steps
at the center of a matrix block. When the gas desorption rate coefficient is large (left figure
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Fig. 1 Effect of sorption kinetics on gas behavior in homogeneous porous medium. Free gas versus adsorbed
gas concentrations during gas release at the center of a matrix block (1-D slab) with 10 cm. half-length,
K = 0.1, D = 1.0E−3 cm2/s, B0 = 4.934E−14 cm2, µg = 2.0E−7 kg/cm s, T = 293.15 K, ∂C(x =
0, t)/∂x = ∂Cµ(x = 0, t)/∂x = 0.0, and C(x = L , t) = Cµ(x = L , t) = 0.0

with kr = 1.0E−3), the kinetics model maintains the same straight line relationship between
the adsorbed and free gas as in the equilibrium case. When the rate coefficient is not large
enough (right figure with kr = 1.0E−5); however, the isotherm corresponding to the kinetics
model deviates from the equilibrium and becomes rather steep. Consequently, the domain
of free gas amount is decreased, whereas the range of adsorbed gas amount is the same.
Both kinetics and equilibrium cases are passing through the origin; however, in this case, the
kinetics model is not following a straight line relationship between the free and adsorbed gas
amounts.

As mentioned, the sorption rate coefficients are functions of interaction energy E . Fur-
thermore, in the case of adsorption in porous medium, the energy itself is a function of the
characteristic pore size, i.e., E(r) with the pore half-width r . Jagiello et al. (1995) showed
that the energy tends to be larger in smaller pores than in larger pores, i.e., dE/dr < 0. Hence,
through the energy dependence of the partition coefficient, the adsorption kinetics is closely
tied to the pore sizes of the matrix. This dependence is necessary in order to carry the kinetics
information of the gas–solid system at the pore scale to a local continuum scale and could
be explained as follows. Assume that the adsorption rate coefficient kf is independent of the
interaction energy and hence its value is dictated only by the rate of collision of molecules
to the surface. However, the desorption rate coefficient, kr , is allowed to follow an Arrhenius
relation:

kr = kr,∞ exp

(−E

RT

)

Then the partition coefficient is written in terms of the interaction energy as follows:

K (E) = kf (E)

kr(E)
= kf

kr,∞
exp

[
E(r)

RT

]
(9)
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Now, using this definition, we take the derivative of the partition coefficient with respect to
the pore size, r , and obtain

dK

dr
= kf

kr,∞ RT
exp

[
E(r)

RT

]
dE(r)

dr
< 0 (10)

Thus, we find that the changes in the partition coefficient is inversely proportional to the pore
size of the matrix. This condition plays an important role in our investigation as we assume
the presence of a direct coupling between the average pore size and the porosity values.
Hence, we shall consider that the coefficient varies in a similar manner with the changes in
porosity, i.e., dK/dφ < 0.

2.2 Conservation of Gas Mass in Porous Media

In this article, the mass balance involves the following transient equations for the free and
adsorbed gas amounts, where adsorption of free gas in the matrix and desorption is repre-
sented by a finite mass interchange between free and adsorbed gas.

φ
∂C

∂t
+ (1 − φ)

∂Cµ

∂t
= ∂

∂x

(
φ D

∂C

∂x

)
+ ∂

∂x

(
φC

B0

µ

∂p

∂x

)
(11)

∂Cµ

∂t
= kr(K C − Cµ)

Here, x–t are the space–time coordinates, C(x, t) the free gas concentration (mol/pore vol-
ume), Cµ(x, t) the adsorbed gas concentration (mol/solid volume), φ the interconnected
porosity, D(φ) the tortuosity-corrected coefficient of molecular diffusion, B0 the absolute
permeability of the porous medium, p the pore pressure, and µ the dynamic gas viscosity.
Note that the formulation contains a diffusive transport term which is Fickian in nature. This
roughly corresponds to bulk (pore) diffusion as the mechanism of transport. The existence of
other mechanisms (e.g., Knudsen and surface diffusion) will not be considered in this study.

The formulation is different from the case where the solid material is considered to be in
equilibrium with the gas in-place, i.e., the equilibrium adsorption dynamics. We introduce
virial equation of state:

p = RTC + RTXC2 + RTX1C3 + RTX2C4 + · · · . (12)

with the parameters X, X1, X2, . . . representing the second, third, fourth,. . . virial coeffi-
cients, which are functions of temperature and composition. For practical purposes, it is
common to use only the lower order terms of the equation:

p ∼= RTC + RTXC2 (13)

Taking derivative of pressure with respect to the concentration and using the chain rule, Eq. 11
becomes:

φ
∂C

∂t
+ (1 − φ)

∂Cµ

∂t
= ∂

∂x

[
φ

(
D + C

B0 RT

µ
(2XC + 1)

)
∂C

∂x

]
(14)

∂Cµ

∂t
= kr(K C − Cµ)

We performed sensitivity analysis using methane with a coal sample to determine the effect
of ideal gas assumption (with XC = 0) on the gas–matrix system (Fig. 2). The ideal gas
assumption does not create significant effects, and it has no impact on the concentration
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Fig. 2 Comparison of ideal and real gas models. Left Free gas concentration profile versus distance from
the center of coal matrix. Middle Adsorbed gas concentration profile versus distance from the center of coal
matrix. Right Gas mole fraction desorbed versus time. Considered gas is methane and the half length of the
matrix block (1-D slab) is 10 cm, kr = 1.0E − 5 s−1, K = 0.1, D = 1.0E−3 cm2/s, B0 = 4.934E−14 cm2,
µg = 2.0E−7 kg/cm s, T = 293.15 K, ∂C(x = 0, t)/∂x = ∂Cµ(x = 0, t)/∂x = 0.0 and C(x = L , t) =
Cµ(x = L , t) = 0.0

profiles and on the fractional gas recovery curve. The following governing equation for the
ideal free gas mass will thus be adopted for simplicity in our analysis:

φ
∂C

∂t
+ (1 − φ)

∂Cµ

∂t
= ∂

∂x

[
φ

(
D + C

B0 RT

µ

)
∂C

∂x

]
(15)

∂Cµ

∂t
= kr(K C − Cµ)

Next, Eq. 15 is reorganized and written in the following form:

∂C
∂t = D ∂2C

∂x2 + α ∂C
∂x + βα′ ∂C

∂x + βC ∂2C
∂x2 − �kr(K C − Cµ)

∂Cµ

∂t = kr(K C − Cµ)

(16)

Here, we introduce α = ∂(φD)/φ∂x as an effective drift velocity, reflecting changes in
free gas concentration due to a non-constant diffusivity with a gradient. In addition, we
have α′ = ∂(φC)/φ∂x , and we introduce, �= (1 − φ)/φ as the solid-to-bulk volume ratio,
β = B0 RT/µ as the gas mobility.

Prior to the analysis of gas behavior in heterogeneous porous medium, it is worthwhile
to briefly mention here the impact of outer boundary (i.e., the pressure condition in the sur-
rounding fractures) on the ultimate gas recovery using Eq. 16. Figure 3 depicts the effect
of outer boundary condition which will be used in our numerical simulation. The initially
available free gas release takes place rapidly within a few days for all the cases considered.
Following the completion of free gas release, the desorbed gas becomes the main source of
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Fig. 3 Influence of outer boundary condition on the ultimate gas recovery from a matrix block surrounded by
fractures. Left Free gas concentration profile versus distance from the center of matrix. Middle Adsorbed gas
concentration profile versus distance from the center of matrix. Right Gas mole fraction desorbed versus time.
The half-length of the matrix block (1-D slab) is 10 cm, kr = 1.0E−5 s−1, K = 0.1, D = 1.0E−3 cm2/s,
B0 = 4.934E−14 cm2, µg = 2.0E−7 kg/cm s, T = 293.15 K, ∂C(x = 0, t)/∂x = ∂Cµ(x = 0, t)/∂x = 0.0,
and Cµ(x = L , t) = 0.0. The initial pore pressure is 4874.6 kPa

production. During this latter period, the gas release is slow and a relatively long period of
time is required for the ultimate gas recovery. In the case of zero partial pressure of methane
at the outer boundary (i.e., ideal but unrealistic case of removing the released gas), com-
plete recovery is achieved. However, when the partial pressure of methane at the boundary
is increased to a finite value, which means less pressure drop across the coal matrix, the
results show that the gas release rate is lower and the ultimate gas recovery is less than unity.
Here, we assumed fixed outer boundary conditions which are equal to 15% and 25% of the
initially distributed free gas in the matrix. In the following analysis, the outer boundary of
the matrices will be fixed to a constant value.

3 Gas Behavior in Heterogeneous Matrix

In our naturally occurring porous medium, heterogeneity is represented by a time-indepen-
dent, spatially variable random porosity field φ = φ̄ + φ̃ in terms of its mean φ̄ and small
fluctuation φ̃. Further, it is considered that the matrix porosity obeys stationarity of moments
of order one and two (mean and the variance of porosity kept constant) with a well-defined
spatial covariance function. All the dependent variables, transport and rate coefficients are
affected by the medium heterogeneity presented by the porosity random field; therefore, they
are also considered to be random variables. Consider that an over-bar and a tilde over a
quantity denote its average value and its fluctuations about the mean, respectively. We then
have:
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α = ᾱ + α̃

α′ = ᾱ′ + α̃′

C = C̄ + C̃

Cµ = C̄µ + C̃µ

D = D̄ + D̃

� = �̄ + �̃

K = K̄ + K̃

Note here that the partition coefficient K is also considered as a random variable so that the
porosity fluctuations have the potential to create variations in gas adsorption and desorption
rates. This is a reasonable and important approach since coals and shales are mixtures of
various minerals and organic material exhibiting an intricate pore network. Variations in the
material properties (e.g., rank and maceral content) add to structurally complex nature of
coals and shales, which influences the gas retention (adsorption) capacity. Substituting these
expressions into the governing gas mass equation (16), and taking the expectation, the mass
balance equation for mean free and adsorbed gas concentrations are obtained.

∂C̄

∂t
+ �̄

∂C̄µ

∂t
− D̄

∂2C̄

∂x2 = R̄
(17)

∂C̄µ

∂t
= kr

(
K̄ C̄ + K̃ C̃ − C̄µ

)

Subtracting the obtained mean equations from the original ones (i.e., Eq. 16), the mean
removed equations are derived as following:

∂C̃

∂t
+ �̄

∂C̃µ

∂t
− ᾱ

∂C̃

∂x
− D̄

∂2C̃

∂x2 − βᾱ′ ∂C̃

∂x
− βC̄

∂2C̃

∂x2 − βC̃
∂2C̄

∂x2 = R̃
(18)

∂C̃µ

∂t
+ krC̃µ = kr

(
K C̃ + K̃ C̄ + K̃ C̃ − K̃ C̃

)

where we defined R̄ and R̃ as

R̄ = ᾱ
∂C̄

∂x
+ βᾱ′ ∂C̄

∂x
+ βC̄

∂2C̄

∂x2 + α̃∂C̃

∂x
+ D̃∂2C̃

∂x2 + β
α̃′∂C̃

∂x
− �̃∂C̃µ

∂t
(19)

R̃ = −�̃
∂C̄µ

∂t
− �̃

∂C̃µ

∂t
+ �̃∂C̃µ

∂t
+ α̃

∂C̄

∂x
+ α̃

∂C̃

∂x
− α̃∂C̃

∂x
+ D̃

∂2C̄

∂x2 + D̃
∂2C̃

∂x2 − D̃∂2C̃

∂x2

+ βα̃′ ∂C̄

∂x
+ βα̃′ ∂C̃

∂x
− β

α̃′∂C̃

∂x
+ βC̃

∂2C̃

∂x2 − β
C̃∂2C̃

∂x2 (20)

Next, we implement the assumption of small-perturbations. Accordingly, the porosity fluctu-
ations are so small that the terms including fluctuation correlations higher than second order
are neglected. In homogeneous porous media, ᾱ, and ᾱ′ are defined as (L’Heureux 2004)

ᾱ ∼= D̃∂φ̃

∂x
−

(
D̄

φ̄

)
φ̃∂φ̃

∂x

ᾱ′ ∼= C̃∂φ̃

∂x
−

(
C̄

φ̄

)
φ̃∂φ̃

∂x
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which are already second order in porosity fluctuations; therefore, ᾱ∂C̃/∂x ∼= 0 and ᾱ′∂C̃/

∂x ∼= 0 are taken.
Introducing the notation of ξ1 = α̃ and ξ2 = D̃ and taking space-Fourier and time-Laplace

transform of the Eq. 17 leads to Fourier–Laplace solution of the mean concentrations:

(s + k2 D̄)C̄ks − C̄k,t=0 + s�̄(C̄µ)ks − �̄(C̄µ)k,t=0 = R̄ks
(21)

(C̄µ)ks = (s + kr)
−1

[
(C̄µ)k,t=0 + kr(K̄ C̄ + K̃ C̃)ks

]

where k is the wave number, s the Laplace transform variable, C̄k,t=0 and (C̄µ)k,t=0 are the
Fourier transforms of the initial mean concentration of free and adsorbed gas, respectively.
Here R̄ks is defined as

R̄ks =
⎛
⎝ᾱ

∂C̄

∂x
+ βᾱ′ ∂C̄

∂x
+ βC̄

∂2C̄

∂x2 +
∑

m=1,2

ξm∂mC̃

∂xm + β
α̃′∂C̃

∂x
− �̃∂C̃µ

∂t

⎞
⎠

ks

(22)

First and second terms in Eq. 22 are corrections to drift velocity, the third term is related to
diffusive transport, and the last three terms indicate non-trivial cross-correlations between
the fluctuating porosity, transport, and kinetic coefficients with free and adsorbed gas concen-
tration fields. Combining conservation of gas mass equation (21) for the free and adsorbed
gas we have:

[
s

(
1 + �̄kr K̄

s + kr

)
+ k2 D̄

]
C̄ks = C̄k,t=0 +

(
�̄ − s�̄

s + kr

)
C̄µk,t=0 − s�̄kr

s + kr

(
K̃ C̃

)
ks

+ R̄ks

Hence, formal solution of the Fourier–Laplace transform of the mean concentration C̄ks is

C̄ks = Ĝ−1
ks · R̄ks + Ĝ−1

ks · Xks (23)

where Ĝks and Xks are defined as

Ĝks =
[

s

(
1 + �̄kr K̄

s + kr

)
+ k2 D̄

]

Xks =
[

C̄k,t=0 +
(

�̄ − s�̄
s + kr

)
(C̄µ)k,t=0 − s�̄kr

s + kr

(
K̃ C̃

)
ks

]

In order to find the equivalent expression for free gas fluctuation C̃ in Fourier–Laplace
domain, first we need to use the mean-field approximation for the terms βC̄∂2C̃/∂x2 and
βC̃∂2C̄/∂x2. Assuming the average concentration is replaced by its value averaged over a

large space domain L and time interval τ : ¯̄C = ∫ τ

0

∫ L
0 C(x, t)dxdt/Lτ ≡ g and ∂ ¯̄C/∂φ = g′.

Equivalently, we take C̄ks = g in Fourier–Laplace domain. Figure 4 shows the effect of tight
matrix porosity on the mean-field approximation of free gas concentration g and its derivative
g′.

Next, we apply Fourier–Laplace transform to the perturbation equation (18):

(
s + k2 D̄ + 2βgk2

)
C̃ks + �̄sC̃µks = R̃ks

C̃µks = (kr + s)−1kr K̄ C̃ks + (kr + s)−1kr

[
K̃ C̄ + K̃ C̃ − K̃ C̃

]
ks

(24)

123



292 E. Fathi, I. Y. Akkutlu

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10−4

φ

g

0.02 0.04 0.06 0.08
−7

−6

−5

−4

−3

−2

−1

0
x 10−3

φ

dg
/d

φ

Fig. 4 Effect of tight matrix porosity on the mean field approximation of free gas concentration, g and its deriv-
ative g′. kr = 1.0E−5 s−1, K = 0.1, D = 1.0E−3 cm2/s, B0 = 4.934E−14 cm2, µg = 2.0E−7 kg/cm s,
T = 293.15 K, ∂C(x = 0, t)/∂x = ∂Cµ(x = 0, t)/∂x = 0.0, and C(x = L , t) = Cµ(x = L , t) = 0.0

where R̃ks is defined as

R̃ks =

⎛
⎜⎜⎝

−�̃
∂C̄µ

∂t − �̃
∂C̃µ

∂t + �̃∂C̃µ

∂t + α̃ ∂C̄
∂x + α̃ ∂C̃

∂x − α̃∂C̃
∂x + D̃ ∂2C̄

∂x2 + D̃ ∂2C̃
∂x2

− D̃∂2C̃
∂x2 + βα̃′ ∂C̄

∂x + βα̃′ ∂C̃
∂x − β α̃′∂C̃

∂x + βC̃ ∂2C̃
∂x2 − β C̃∂2C̃

∂x2

⎞
⎟⎟⎠

ks

(25)

In the derivation of Eq. 8, terms of higher order than quadratic are neglected, whereas
C̃(x, 0)= C̃µ(x, 0)= 0 are considered. Combining the free and adsorbed gas fluctuation
equations in (24) gives

[
s

(
1 + �̄kr K̄

s + kr

)
+ (D̄ + 2βg)k2

]
C̃ks = R̃ks − s�̄kr

s + kr

[
K̃ C̄ + K̃ C̃ − K̃ C̃

]
ks

Hence, the formal solution to the Fourier–Laplace transform of the concentration fluctuation
C̃ks is given by

C̃ks = G−1
ks R̃ks − Lks Mks (26)

in which

Gks =
[

s

(
1 + �̄kr K̄

s + kr

)
+ (D̄ + 2βg)k2

]
ks

Lks =
(

s�̄kr
s + kr

)
G−1

ks

Mks =
[

K̃ C̄ + K̃ C̃ − K̃ C̃
]

ks
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In the space–time domain, the fluctuating concentration field is given by the convolution
integral

C̃ (x, t) =
t∫

0

∫
G−1 (

x − x ′, t − t ′
)

R̃
(
x ′, t ′

)
dx ′dt ′

−
t∫

0

∫
L

(
x − x ′, t − t ′

)
M

(
x ′, t ′

)
dx ′dt ′

≡ G−1
x−x ′,t−t ′ ∗ R̃x ′,t ′ − Lx−x ′,t−t ′ ∗ Mx ′,t ′ (27)

Substituting C̃ in adsorbed gas fluctuation equation gives

(C̃µ)ks = (kr + s)−1kr K̄ C̃ks + (kr + s)−1kr

[
K̃ C̄ + K̃ C̃ − K̃ C̃

]
ks

(C̃µ)ks = (kr + s)−1kr K̄
(

G−1
ks · R̃ks − Lks · Mks

)
+ (kr + s)−1 kr

[
K̃ C̄ + K̃ C̃ − K̃ C̃

]
ks

= Ğ−1
ks R̃ks + L̆ks Mks (28)

in which Ğ−1
ks =

(
K̄ kr

s + kr

)
G−1

ks and L̆ks =
(

−K̄ kr
s + kr

Lks + kr
s + kr

)
.

In the space–time domain, the fluctuating adsorbed gas concentration field is given by the
convolution integral

C̃µ (x, t) =
t∫

0

∫
Ğ−1 (

x − x ′, t − t ′
)

R̃
(
x ′, t ′

)
dx ′dt ′

−
t∫

0

∫
L̆

(
x − x ′, t − t ′

)
M

(
x ′, t ′

)
dx ′dt ′

≡ Ğ−1
x−x ′,t−t ′ ∗ R̃x ′,t ′ − L̆ x−x ′,t−t ′ ∗ Mx ′,t ′ (29)

The cross-correlation terms in Eq. 22, i.e., the last three terms, are obtained using C̃ and
C̃µ. The summation term can be obtained by multiplying the proper spatial derivative of
the concentration fluctuation, C̃ , with the fluctuating transport term, ξm(x), neglecting the
third-order porosity fluctuation terms and taking the expectation.

∑
m=1,2

ξm ∂
m C̃

∂x
m =

∑
m=1,2

∂m G−1
x−x ′,t−t ′

∂xm ∗ ξm R̃x ′,t ′ −
∑

m=1,2

∂m Lx−x ′,t−t ′

∂xm ∗ ξm Mx
′, t ′ (30)

The fourth term in Eq. 22 is obtained similarly using the definition of C̃ :

β
α̃′∂C̃

∂x
= ∂G−1

x−x ′,t−t ′

∂t
∗ βα̃′ R̃ − ∂Lx−x ′,t−t ′

∂t
∗ βα̃′M (31)

And the last term is obtained by multiplying the time derivative of the adsorbed gas concen-
tration fluctuation, C̃µ, with �̃ and taking the average over realizations.

�̃∂C̃µ

∂t
= ∂Ğ−1

x−x ′,t−t ′

∂t
∗ �̃R̃ + ∂ L̆ x−x ′,t−t ′

∂t
∗ �̃M (32)
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where the third-order terms in the porosity fluctuations have been dropped. Taking the space-
Fourier and time-Laplace transformation of Eqs. (30)–(32) give

∑
m=1,2

ξm ∂
m C̃

∂x
m = PksC̄µk,t=0 + QksC̄ks + SksC̄ks − TksC̄ks (33)

β
α̃′∂C̃

∂x
= UksC̄µk,t=0 + VksC̄ks + WksC̄ks − YksC̄ks (34)

�̃∂C̃µ

∂t
= ZksC̄µk,t=0 + MksC̄ks + NksC̄ks + OksC̄ks (35)

Now substituting all these equations back to Eq. 22, R̄ks becomes

R̄ks =
(

ᾱ
∂C̄

∂x
+ βᾱ′ ∂C̄

∂x
+ βC̄

∂2C̄

∂x2

)
ks

+ PksC̄µk,t=0 + QksC̄ks + SksC̄ks − TksC̄ks

+ UksC̄µk,t=0 + VksC̄ks + WksC̄ks − YksC̄ks + ZksC̄µk,t=0

+ MksC̄ks + NksC̄ks + OksC̄ks (36)

where a series of integral terms appear and are tabulated in Table 2, in Appendix A. In the
table, Q is the dummy wave number label. In addition, we can express the cross-correlation

K̃ C̃ in Eq. 17 using the definition of C̃ (Eq. 27) in the following form

K̃ C̃ = G−1 ∗ K̃ R̃ − L ∗ K̃ M (37)

Taking space–Fourier and time–Laplace transform of Eq. 37 leads to

(
K̃ C̃

)
ks

= IksC̄µk,t=0 + EksC̄ks + FksC̄ks − JksC̄ks (38)

which also includes a set of integral terms given in Table 3 in the Appendix A. In order to
evaluate these integrals, the porosity fluctuations, φ̃, around the mean porosity, φ̄, assumed
to be Gaussian random variable with zero mean and variance, σ 2

φ , and the spatial correlation

function defined as φ̃(x)φ̃(y) = σ 2
φ f (|x − y|) are considered. The auto- and cross-covar-

iances appearing in the integrals are defined using Gaussian correlation function and the

assumption of second-order stationarity. Then α̃x α̃x ′ = (
D′ + D̄/φ̄

)2
∂x φ̃(x)∂x ′ φ̃(x ′) =

− (
D′ + D̄/φ̄

)2
σ 2

φ d2 f (x)/dx2 is defined in space and time domain which is ξQ1ξ−Q1 =
α̃Q α̃−Q = (

D′ + D̄/φ̄
)2

σ 2
φ Q2 fQ in Fourier space domain where σ 2

φ is the variance of poros-
ity, and fQ is the Fourier transform of the porosity correlation function f (x). Assuming
Gaussian random variable with Gaussian model of spatial covariance porosity, characterized
by correlation length, λ, we have fx = exp

(−x2/2λ2
)

and fQ = √
2πλ exp

(−Q2λ2/2
)

in the real and spectral domains, respectively. Therefore, we defined a set of auto- and
cross-covariance in Table 4, Appendix B. Using conventional approximations s = k = 0 in
Q-dependent terms of the integrands, the following solutions are obtained for the integrals
defined in Tables 2 and 3:
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Pks = D̄σ 2
φ

φ̄(D̄ + 2βg)
; Qks = D′σ 2

φ

(D̄ + 2βg)

(
2D′ + D̄

φ̄

)
k2; Sks = Tks = Yks = 0;

Uks =
β(g′ + g

φ̄
)σ 2

φ

(D̄ + 2βg)
; Vks =

β D′
(

g′ + g

φ̄

)
σ 2

φ

(D̄ + 2βg)
k2; Wks = Zks = Mks = Nks = 0;

Oks = kr K ′σ 2
φ ; Iks = −K ′σ 2

φ

λ2

D̄
; Fks = K ′ D′σ 2

φ

λ2

D̄
k2; Eks = Jks = 0;

in which Ğ−1
k(0) = 0 and L̆k(0) = kr . Thus, the R̄ks becomes

R̄ks =
(

ᾱ
∂C̄

∂x
+ βᾱ′ ∂C̄

∂x
+ βC̄

∂2C̄

∂x2

)
ks

+ D̄σ 2
φ

φ̄(D̄ + 2βg)
(C̄µ)k,t=0

+
(

D′σ 2
φ

D̄ + 2βg

) (
2D′ + D̄

φ̄

)

× k2C̄ks + β
(
g′ + g/φ̄

)
σ 2

φ

D̄ + 2βg
(C̄µ)k,t=0 + β D′ (g′ + g/φ̄

)
σ 2

φ

D̄ + 2βg
k2C̄ks + kr K ′σ 2

φ C̄ks

(39)

Taking the inverse Laplace–Fourier transform, R̄ks becomes:

R̄ = ᾱ
∂C̄

∂x
+ βᾱ′ ∂C̄

∂x
+ βC̄

∂2C̄

∂x2

+
(

D̄σ 2
φ

φ̄(D̄ + 2βg)

)
(C̄µ)x,t=0 −

(
D′(2D′ + D̄/φ̄)σ 2

φ

D̄ + 2βg

)
∂2C̄

∂x2

+
(

β(g′ + g/φ̄)σ 2
φ

(D̄ + 2βg)

)
(C̄µ)x,t=0 −

(
β D′(g′ + g/φ̄)σ 2

φ

D̄ + 2βg

)
∂2C̄

∂x2 + kr K ′σ 2
φ C̄

(40)

and also
(

K̃ C̃
)

ks
is given by:

(
K̃ C̃

)
ks

= −
[

K ′σ 2
φλ2/(D̄ + 2βg)

]
C̄µk,t=0 +

[
K ′ D′σ 2

φλ2/(D̄ + 2βg)
]

k2C̄ks (41)

which, in the time–space domain results in:

K̃ C̃ = −
[

K ′σ 2
φλ2/(D̄ + 2βg)

]
(C̄µ)x,t=0 −

[
K ′ D′σ 2

φλ2/(D̄ + 2βg)
] ∂2C̄

∂x2 (42)

4 Upscaled Governing Equations

Substituting equations (40) and (42) into the mean governing equations given in (17), using
the definitions of ᾱ, ᾱ′, and β, and re-arranging these leads to the following form of the
governing equations:

φ̄ ∂C̄
∂t + (1 − φ̄)

∂C̄µ

∂t = ∂
∂x

(
φ̄D ∂C̄

∂x

)
+ ∂

∂x

(
φ̄C̄ B0

µ

∂ p̄
∂x

)
+ �1 + �2

∂C̄µ

∂t = kr
[
K̄ C̄ − (

C̄µ + �3
)] (43)

123



296 E. Fathi, I. Y. Akkutlu

in which new quantities reflecting the effects of local heterogeneities appear. These are defined
as:

D = D̄ − D′σ 2
φ

⎛
⎜⎜⎜⎝

2D′ + βg′ + D̄ + βg

φ̄

D̄ + 2βg

⎞
⎟⎟⎟⎠ (44)

�1 = [
D̄ + β(φ̄g′ + g)

] σ 2
φ C̄µ0

(D̄ + 2βg)
(45)

�2 = kr K ′φ̄σ 2
φ C̄ (46)

�3 = K ′σ 2
φλ2

D̄ + 2βg

(
C̄µ0 + D′ ∂2C̄

∂x2

)
(47)

where D′ = d D̄/dφ̄ > 0 and K ′ = d K̄/dφ̄ < 0 in agreement with our discussion in Sect.
2.1.

Based on the analytical part of our investigation, the following fundamental observations
on the structure of the upscaled differential equations can be made:

1. Upscaling introduces clearly defined new terms into the governing equations. These are
the diffusive term, involving apparent diffusivity, D, and the source/sink terms: �1, �2,
and �3 in Eq. 43.

2. In the homogeneous limit, the parameters σ 2
φ and λ are nil; hence, the apparent diffusion

coefficient, D, reduces to D̄, and �i terms all disappear. Thus, Eq. 43 become identical
with the Eq. (11), i.e., the homogeneous case.

3. D is influenced by the presence of viscous transport, and its physical interpretation
appears complex.

4. �i increase with the variance of porosity, σ 2
φ .

5. �2 and �3 show dependence on the free gas concentration, and therefore they are
expected to change in time and space.

6. �1 and �3 increase with the initially available mean adsorbed gas amount, C̄µ0

In the following section, the obtained upscaled governing equations given in (43) are
numerically analyzed using a time-implicit finite difference approach based on Newton
method and using gas/matrix system parameters given in Table 1, and considering the ini-
tial/boundary value problem defined in Fig. 5. The data set includes the local (or laboratory
measured) viscous and diffusive transport, and kinetics parameters for a symmetric matrix
block (slab) with a half-length of 10.0 cm and surrounded by fracture; in addition, it intro-
duces a mildly heterogeneous matrix as base-case for the sensitivity analysis. At a particular
time-step during the simulation, as part of the Newton iteration, the mean-field approxi-
mation of the free gas concentration g and its derivative with respect to porosity, g′, are
computed. Results are presented in terms of the free and adsorbed gas concentration profiles,
and fractional recovery curves in the Figs. 6–9.

5 Results and Discussion

Our analysis involves two types of numerically obtained data, which correspond to a matrix
considered to be (i) homogeneous, or (ii) heterogeneous. In the latter case, the analysis
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Table 1 Problem parameters for
the heterogeneous gas–matrix
system

Parameter Unit Value

φ̄ fraction 1.0E−2

σ 2
φ – 5.3E−7

C̄0 mol/cc 2.0E−3

kr 1/s 1.0E−5

K̄ fraction 0.1

g mol/cc 2.028E−4

B0 cm2 4.934E−14

µg kg/cm s 2.0E−7

K ′ fraction −5.0E2

D̄ cm2/s 1.0E−3

D′ cm2/s 3.3E−2

g′ mol/cc −0.00835

α̂ cm/s 6.0E−9

λ cm 1.0

L cm 10.0

T Kelvin 293.15

L= 10 cm
(half length)

coal/shale sample 

0.0
,0.0

,0.0

0.0

tx

tx

x

C

x

C

Inner
boundary condition

Outer
boundary condition

0.0),(

0.0),(

tLxC

tLxC

Fig. 5 A schematic showing the setup for numerical simulation. δxi = 10/500 cm and δti = 1.4 min for
i = 1, 2, . . ., 500, C(x, t = 0) = 2.0E−3, Cµ(x, t = 0) = 2.0E−4 mol/cc

requires that the simulations are run under varying conditions of heterogeneity. Heteroge-
neous matrix properties with the base-state values are also given in Table 1.

Figure 6 shows the direct comparison of the heterogeneous case with the equivalent homo-
geneous case, in terms of free/adsorbed gas concentration profiles and fractional gas recovery
curve. It is observed that heterogeneity retards gas release from the matrix and influences gas
recovery adversely. The ultimate recovery, which was 100% in the homogeneous case, drops
to a value around 87.0% in the mildly heterogeneous case. Understanding how the matrix
heterogeneity influences the gas behavior, as depicted in Fig. 6, requires several steps of anal-
ysis. For this purpose, first, a sensitivity analysis is performed through numerical simulation
and comparing the magnitudes of the terms appearing in (43).

Based on the sensitivity analysis, it is found that D ∼= D̄; hence, mild fluctuations in
porosity has negligible effect on molecular diffusion in porous media. In addition, it is found
that �2 is negligible for the typical coalbed and gas shale conditions, and �3 safely reduces
to the following form:
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Fig. 6 Effect of porosity heterogeneity on gas recovery. Left Free gas concentration profile versus distance
from the center of matrix. Middle Adsorbed gas concentration profile versus distance from the center of the
matrix. Right Gas mole fraction desorbed versus time

Fig. 7 Effect of �3 on gas release (left) and gas uptake (right) under the equilibrium adsorption condition

�3 ∼= K ′λ2σ 2
φ C̄µ0

D̄ + 2βg
(48)
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Fig. 9 Macro-kinetics and macro-transport effects on the ultimate gas recovery. Fractional gas recovery versus
time for a convective–diffusive (left) and for a diffusive (right) system with zero permeability

5.1 Macro-Transport Effect

Further, it is observed that typically φ̄g′ � g condition is satisfied across the matrix block;
hence, �1 simplifies to

�1 ∼=
(

D̄

D̄ + 2βg
+ βg

D̄ + 2βg

)
σ 2

φ C̄µ0. (49)
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Substituting the definitions of β and g into this approximation and re-arranging, the following
expression is obtained:

�1 ∼=

⎡
⎢⎢⎣ 1

1 + 2B0 ¯̄p
D̄µ

+ 1

2 + D̄µ

B0 ¯̄p

⎤
⎥⎥⎦ σ 2

φ C̄µ0 = σ 2
φ C̄µ0

1 + NPe/(1 + NPe)
. (50)

Here, ¯̄p = RT ¯̄C is the average pressure across the matrix and the denominator includes a
dimensionless quantity, NPe, commonly known as Péclet number. It is a measure of the rate
of viscous transport of a flow to its rate of molecular diffusion. Hence, for typical coal and
shale matrices, �1 increases with the matrix permeability. However, note that it does not
disappear in the zero permeability limit; instead, it changes with the average initial adsorbed
gas amount and with the porosity variance (This limit will be further discussed in Sect. 5.3).
Thus, �1 is truly a term corresponding to macro-transport effect of the heterogeneous matrix.

5.2 Macro-Kinetics Effect

Similarly, one can re-visit the expression of �3 by substituting the definitions of β and g into
the approximation:

�3 ∼= K ′σ 2
φλ2C̄µ0

D̄ + 2B0 ¯̄p
µ

= K ′λ2

D̄

(
1 + 2B0 ¯̄p

D̄µ

)σ 2
φ C̄µ0 = NT h

kr(1 + 2NPe)
σ 2

φ C̄µ0, (51)

which now includes a modified Thiele modulus, NT h = (dK̄/dφ̄)krλ
2/D̄ for the heteroge-

neous matrix. In our case, Thiele modulus is a measure of the porosity dependence of the
adsorption rate with respect to the rate of diffusion and, interestingly, its definition now
includes the correlation length of the heterogeneous porosity field. As in the case of macro-
transport term, �3 increases with the average initial adsorbed gas amount and with the porosity
variance. Hence, �3 reflects macro-kinetics effect of the heterogeneous matrix.

One can have a more insightful look at the macro-kinetics effect in the equilibrium adsorp-
tion limit. Note that under the equilibrium conditions, we now have

K̄ C̄ − (
C̄µ + �3

) = 0, (52)

which gives

C̄µ = K̄ C̄ − �3 (53)

when re-organized. A schematic representation of the macro-kinetics effect is shown in Fig. 7
for both gas uptake and release cases. For a given free gas amount, the macro-kinetics effect
(or �3) causes the matrix to retain a larger amount of adsorbed gas, which creates trapping
effect during the gas release and a threshold effect during the gas uptake. These observations
are confirmed using numerical results, which are shown in Fig. 8.

Figure 9 (left) delineates the macro-transport and macro-kinetics effects of heterogeneity,
i.e., it investigates the influences of �1 and �3 on the fractional gas recovery curve sepa-
rately. Obviously, macro-transport and -kinetics both play an active role on the reduction in
gas recovery observed earlier, see Fig. 6 (right).
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5.3 Diffusive limit: NPe → 0

When permeability is low, typically in the order of nano-darcy, the convective transport term
in our upscaled free gas mass balance vanishes. In this limit, Eqs. 50 and 51 reduce to

�1,diff = σ 2
φ C̄µ0

�3,diff = NT h
kr

σ 2
φ C̄µ0

(54)

Substituting equation (54) into the upscaled equation (43), and considering D and �2 as neg-
ligible, the upscaled equation for diffusive system becomes:

φ̄ ∂C̄
∂t + (1 − φ̄)

∂C̄µ

∂t = ∂
∂x

(
φ̄ D̄

∂C̄

∂x

)
+ σ 2

φ C̄µ0

∂C̄µ

∂t = kf C̄ − krC̄µ + NT hσ 2
φ C̄µ0

(55)

Figure 9 (right) shows the diffusive system response in terms of gas recovery. We note that
the absence of viscous transport does not influence the homogeneous response significantly
because, during the same time period, almost the same amount of gas is ultimately recovered
using diffusion as the only transport mechanism; see slightly lower dashed line on Fig. 9
(right) and compare with the other dashed line on Fig. 9 (left). Intuitively, one would expect
such behavior in the case of coal and shale matrices because these environments maintain
relatively low permeability. Interestingly, however, the same argument may not be raised
when the matrix is considered to be heterogenous (see the solid lines in Fig. 9). Less than
60% of the gas initially in-place could be recovered during the same time period when the
gas transport is due to diffusion only. This reduction is due to macro-transport and, more
importantly, to the macro-kinetics effects of the porosity heterogeneity, as they persist in the
diffusive limit. Furthermore, depending on Thiele modulus, the macro-kinetics effect has the
potential to dominate the ultimate gas recovery.

6 Conclusion

In this article, the gas flow, diffusive transport, and adsorption in heterogeneous porous
media resembling coal and shale matrices are investigated using a theoretical approach. In
addition, unlike previous theoretical works, the sorption rates are explicitly introduced to a
mathematical framework in this context.

Random local variations in matrix pore structure and material content are considered, and
their influence on gas sorption and transport are investigated using small perturbations theory,
a proven technique widely used in various other disciplines where analysis of multi-phys-
ics problems are required in the presence of a priori fluctuations induced by non-uniform
fields. In conclusion, the homogenized gas–matrix system behavior can be described using
the following upscaled governing equations

φ
∂C

∂t
+ (1 − φ)

∂Cµ

∂t
= ∂

∂x

(
φD

∂C

∂x

)
+ ∂

∂x

(
φC

B0

µ

∂p

∂x

)
+ σ 2

φ C̄µ0

1 + NPe/(1 + NPe)

∂Cµ

∂t
= kfC − krCµ + NT h

1 + 2NPe
σ 2

φ C̄µ0 (56)

Further, it is found that the matrix heterogeneity generates non-trivial, macro-transport,
and macro-kinetics effects on the system. The system behavior is investigated numerically
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and it is found that macro-kinetics and macro transport have the potential to reduce the
ultimate gas recoveries significantly.
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Appendix A

See Tables 2 and 3.

Table 2

Pks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sξQm�̃−Q [i(k − Q)]m dQ

Qks = ∑
m,n=1,2

∫ 1
2π

G−1
k−Q sξQmξ−Qn [i(k − Q)]m (ik)ndQ

Sks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sβξQm α̃′−Q [i(k − Q)]m (ik)dQ

Tks = ∑
m=1,2

∫ 1
2π

Lk−Q sξQm K̃−Q [i(k − Q)]m dQ

Uks = ∫ 1
2π

G−1
k−Q sβα̃′

Q�̃−Q [i(k − Q)] dQ

Vks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sβξQm α̃′−Q [i(k − Q)] (ik)mdQ

Wks = ∫ 1
2π

G−1
k−Q sβ

2α̃′
Q α̃′

Q [i(k − Q)] (ik)dQ

Yks = ∫ 1
2π

Lk−Q s α̃
′
Q K̃−Q [i(k − Q)] dQ

Zks = ∫ 1
2π

Ğ−1
k−Q t=0�̃Q�̃−QdQ

Mks = ∑
m=1,2

∫ 1
2π

Ğ−1
k−Q t=0�̃QξQm (ik)mdQ

Nks = ∫ 1
2π

Ğ−1
k−Q t=0βα̃′

Q�̃−Q(ik)dQ

Oks = ∫ 1
2π

L̆k−Q t=0 K̃ Q�̃−QdQ

Table 3

Iks = ∫ 1
2π

G−1
k−Q s K̃ Q�̃−QdQ

Eks = ∫ 1
2π

G−1
k−Q s K̃ Q α̃−Q ikdQ

Fks = ∫ 1
2π

G−1
k−Q s K̃ Q D̃−Q (ik)2dQ

Jks = ∫ 1
2π

Lk−Q s K̃ Q K̃−Q dQ
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Appendix B

See Table 4.

Table 4

�̃−Q α̃Q = i
(
D′ + D̄/φ̄

)
σ 2
φ Q

√
2πλ exp

(
−Q2λ2/2

)
�̃−Q D̃Q = D′σ 2

φ

√
2πλ exp

(
−Q2λ2/2

)
α̃Q α̃−Q = (

D′ + D̄/φ̄
)2

σ 2
φ Q2√

2πλ exp
(
−Q2λ2/2

)
D̃−Q α̃Q = α̃Q D̃−Q = i D′ (D′ + D̄/φ̄

)
σ 2
φ Q

√
2πλ exp

(
−Q2λ2/2

)
D̃−Q D̃Q = D′2σ 2

φ

√
2πλ exp

(
−Q2λ2/2

)
�̃−Q α̃′

Q = i
(
C ′ + C̄/φ̄

)
σ 2
φ Q

√
2πλ exp

(
−Q2λ2/2

)
�̃−Q�̃Q = σ 2

φ

√
2πλ exp

(
−Q2λ2/2

)
�̃−Q K̃ Q = K ′σ 2

φ

√
2πλ exp

(
−Q2λ2/2

)
K̃−Q α̃′

Q = i K ′ (C ′ + C̄/φ̄
)
σ 2
φ Q

√
2πλ exp

(
−Q2λ2/2

)
α̃′

Q α̃′−Q = (
C ′ + C̄/φ̄

)2
σ 2
φ Q2 √

2πλ exp
(
−Q2λ2/2

)
α̃Q α̃′−Q = (

C ′ + C̄/φ̄
) (

D′ + D̄/φ̄
)
σ 2
φ Q2 √

2πλ exp
(
−Q2λ2/2

)
D̃Q α̃′−Q = i D′ (C ′ + C̄/φ̄

)
σ 2
φ Q

√
2πλ exp

(
−Q2λ2/2

)
K̃−Q α̃Q = i K ′ (D′ + D̄/φ̄

)
σ 2
φ Q

√
2πλ exp

(
−Q2λ2/2

)
K̃−Q D̃Q = K ′ D′σ 2

φ

√
2πλ exp

(
−Q2λ2/2

)

References

Alvarado, V., Scriven, L.E., Davis, H.T.: Stochastic-perturbation analysis of a one-dimensional dispersion-
reaction equation: effects of spatially-varying reaction rates. Transp Porous Media 32, 139–161 (1998)

Brusseau, M.L., Jessup, R.E., Rao, P.S.C.: Nonequilibrium sorption of organic chemicals: elucidation of rate
limiting processes. Environ. Sci. Technol. 25, 134–142 (1991)

Do, D.D., Wang, K.: A new model for the description of adsorption kinetics in heterogeneous activated
carbon. Carbon 36(10), 1539–1554 (1998)

Dubinin, M.M.: Chemistry and Physics of Carbon. Marcel Dekker, New York (1966)
Forster, D.: Hydrodynamics Fluctuations, Broken Symmetry and Correlation Functions. Benjamin-Cum-

mings, Reading, MA (1977)
Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice Hall, Englewood Cliffs (1993)
Hu, B.X., Deng, F., Cushman, J.H.: Non-local reactive transport with physical and chemical heterogeneity:

linear non-equilibrium sorption with random Kd. Water Resour. Res. 31(9), 2239–2252 (1995)
Jagiello, J., Bandosz, T.J., Putyera, K., Schwarz, J.A.: Micropore structure of template-derived carbons studied

using adsorption of gases with different molecular diameters. J. Chem. Soc., Faraday Trans. 91, 2929–
2933 (1995)

Jenkins, C.D., Boyer, C.M., II: Coalbed- and shale-gas reservoirs. J. Petrol. Technol. 60(2), 92–99 (2008)
Karacan, O.C.: An effective method for resolving spatial distribution of adsorption kinetics in heterogeneous

porous media: applied for carbon dioxide sequestration in coal. Chem Eng. Sci. 58, 4681–4693 (2003)
King, G.R.: Material balance techniques for coal seam and Devonian Shale. SPE 20730 (1990)
L’Heureux, I.: Stochastic reaction-diffusion phenomena in porous media with nonlinear kinetics: effects of

quenched porosity fluctuations. Phys. Rev. Lett. 93(18), 180602 (2004)
Nuttall, B.C.: Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and

enhanced natural gas production. Kentucky Geological Survey Report DE-FC26-02NT41442 (2005)

123



304 E. Fathi, I. Y. Akkutlu

Ruckenstein, E., Vaidyanathan, A.S., Youngquist, G.R.: Sorption by solids with bidisperse pore struc-
tures. Chem. Eng. Sci. 26, 1305–1318 (1971)

Smith D.M., Williams F.L.: Diffusional effects in the recovery of methane from coalbeds. Soc. Petrol. Eng. J.
24, 529–535 (1984)

Weida S.D., Lambert S.W., Boyer II, C.M.: Challenging the traditional coalbed methane exploration and
evaluation. SPE 98069 (2005)

123


	Matrix Heterogeneity Effects on Gas Transportand Adsorption in Coalbed and Shale Gas Reservoirs
	Abstract
	1 Introduction
	2 Local Gas Behavior in the Matrix---Homogeneous Case
	2.1 Kinetics of Gas Adsorption in Porous Media
	2.2 Conservation of Gas Mass in Porous Media

	3 Gas Behavior in Heterogeneous Matrix
	4 Upscaled Governing Equations
	5 Results and Discussion
	5.1 Macro-Transport Effect
	5.2 Macro-Kinetics Effect
	5.3 Diffusive limit: NPe0

	6 Conclusion
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


