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Computation cost is a key issue for finite element methods to simulate hydraulic fractur-
ing. In this paper a coupled finite element method combined with a condensation tech-
nique is proposed to address this issue. Removing the node displacements that have no
contribution to fracture widths from the coupled equations, the condensation technique
reduces the size of the coupled equations in the proposed method. The numerical method
with the condensation technique is verified. Simulations show that the condensation
technique can reduce the computation cost effectively, in particular when the fracture
propagation regime is viscosity-dominated or the simulation is on the early stage. The
effects of the condensation technique on the simulation accuracy, stability, and conver-
gence of the numerical method are discussed. The condensation technique is applicable
to other finite element methods that are based on linear elastic fracture mechanics.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Hydraulic fracturing, on one hand, is a natural process such as the magma-driven dike that can propagate in the earth’s
crust with its length up to tens of kilometers[1,2], and the growth of fracture along glacier beds driven by water[3]. On the
other hand, hydraulic fracturing has been accepted as a technique with a variety of applications. These applications include
measurement of in-situ stress [4], underground storage of hazardous materials [5], heat production from geothermal
reservoirs [6], and barrier walls to prevent containment from transporting [7]. One of the most important applications of
hydraulic fracturing nowadays is to improve the recovery of unconventional hydrocarbon reservoirs [8].

Hydraulic fracturing is a coupled process, and this coupled process behaves in two aspects: (1) the deformation of the
solid medium and the fracture width are dependent on the fluid pressure in a global manner, and they have the property
of non-locality; (2) the fluid flow within fracture is dependent on the fluid pressure and fracture width, and it has the
property of non-linearity. These two fundamental properties lead to tremendous difficulty when investigating hydraulic
fracturing. Great efforts have been made for the investigation of hydraulic fracturing since the 1950s.

Harrison et al. [9] proposed the first simplified theoretical model, followed by the innovations of some asymptotic models
including the PK model [10], PKN model [11], KGD model [12,13], axis-symmetric penny-shaped model[14], and pseudo-3D
models [15,16]. Due to the assumptions in these models, there are some limitations for their application [17]. A variety of
semi-analytical solutions have been achieved based on the plain strain model whereby the solutions are dependent on
the energy consumption regime. The semi-analytical solutions are classified into toughness-dominated ones [18,19] when
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Nomenclature

A domain for M-integral
Atip area of the elements on the fracture tip
B to transfer the net pressure into equivalent node forces
B0 sub-matrix extracted from B
Cl leak-off coefficient
D elastic stiffness tensor
el, ew relative errors of half fracture length and fracture width
E elastic modulus
F kernel function
F equivalent global nodal force of net pressure
g leak-off rate
G shear modulus
H to conclude the contributions of fluid leak-off and fluid injection
KI mode-I stress intensity factor
KIC fracture toughness
Ku global stiffness of the solid elements
Kw global flux stiffness of fluid elements
Koo, Kof, Kfo, Kff sub-matrices extracted from Ku

Km dimensionless fracture toughness
lt half fracture length at moment t
ln, ls half fracture lengths obtained by the numerical method and semi-analytical solutions
L global length stiffness of fluid elements
L0 to determine the contribution of node displacements on fracture surface to fracture width
n unit outward normal of fracture
p net fluid pressure
pf fluid pressure
P, Pn+1 node net pressure and node net pressure at the n + 1-th step
q fluid flux
Q0 injection rate
rc characteristic radius
S collection of boundary conditions of flow
Se set of element edges on the fracture
Dt time step
t time
te simulation time when lt equals 14.4 m
t0 tip arrival time
u displacement
ux, uy displacements in x direction and y direction
ui, uc

i local displacement and auxiliary local displacement
U, Ui(i = n, n + 1) global nodal displacement and global nodal displacement at the i-th step
Uo

nþ1 node displacement without contribution to fracture width at the n + 1-th step

U f
i ði ¼ n; nþ 1Þ node displacement with contribution to fracture width at the i-th step

w fracture width
W a vector formed by the widths on of the nodes on fracture surface
Wi(i = n, n + 1) fracture width at the i-th step
W(i)(i=0, m, m+1) fracture width at the i_th iteration
xj(j=1, 2) local coordinate

Greek letters
dp allowable testing function
dt dimensionless simulation time
dij Kronecker delta
e; emn strain
es

tol; e
w
tol tolerance for stress intensity factor and fracture width

v Poisson’s ratio
n dimensionless x coordinate
q local radial coordinate
r, rij stress
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r0 confining stress
rc

ij auxiliary stress
h local angular coordinate
l fluid dynamic viscosity
v scalar field
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the energy is mainly consumed by the fracture propagation, the viscosity-dominated ones when the energy is mainly con-
sumed by the flow of the viscous fluid within the fracture [20–22], and the intermediate regime for other situations [23].
These semi-analytical solutions can be served as benchmarks for numerical models [22].

The conventional method for the numerical simulation of hydraulic fracturing are the discontinuous displacement (DD)
methods [24–31], which are based on linear elastic fracture mechanics (LEFM) and a variant of the boundary element
method [32]. There exists great difficulty for the DD methods to find their non-local kernel functions when the model has
a complex structure, for example if the model is multi-layered [28]. Finite element methods have greater flexibilities than
the DD methods for the numerical simulation of hydraulic fracturing, because they do not depends on the kernel functions.
A variety of finite element methods have been proposed to simulate hydraulic fracturing. Chen et al. [33] and Chen [34] used
a finite element method and investigated hydraulic fracturing in impermeable mediums. Carrier and Granet [35] discussed
the effects of permeability on fracture propagation, and Papanastasiou [36] investigated the effect of rock plasticity. Hun-
sweck et al. [37] proposed a coupled finite element method to simulate hydraulic fracturing with fluid lag. Fu et al. [38] dis-
cussed the interaction between hydraulic fractures and natural fractures.

There are two key issues for finite element methods to simulate hydraulic fracturing. The firs issue is model remeshing as
fractures continually propagate. The second issue is high computation cost [37,38]. A variety of measurements have been
used to address the first issue. These measurements includes the predefinition of the fracture propagation path [33–36],
the application of node-split technique [38], and the introduction of the extended finite element methods [39–43].

In this paper we are focused on addressing the second issue. One reason for the high computation cost in the finite ele-
ment methods is that the sizes of their equations are large, as they always depend on the number of the nodes in the whole
model. In this paper we introduced a coupled LEFM-based finite element method and a condensation technique. The conden-
sation technique removes the node displacements that have no contribution to fracture width from the coupled equations. It
reduces the size of the coupled equations greatly and results in the decrease of computation cost. This condensation tech-
nique is independent of model remeshing techniques, and it is applicable to other finite element simulators that take LEFM
as their theoretical foundation.

Some assumptions are made in this paper for simplicity. These assumptions include uniform confining stress, zero gaps
between the fluid front within the fracture and the fracture tip, and a straight fracture propagation path that is perpendicular
to the confining stress. The rest of this paper is organized as follows: the theoretical model of hydraulic fracturing in plane
strain is presented in Section 2. The finite element method and the condensation technique are introduced in Section 3. Some
numerical aspects of the method are presented in Section 4. The method with the condensation technique is verified and the
impacts of the condensation technique on the numerical method are discussed in detail in Section 5. Conclusions are made in
Section 6.

2. Theoretical model

As shown in Fig. 1(a), the momentum of fracture propagation in hydraulic fracturing is from the injection of incompress-
ible Newtonian fluid with rate Q0. The bi-wing fracture propagates perpendicular to the direction of far-field least principle
w
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Fig. 1. Sketch of a plane-strain fluid-driven fracture (a) and its equivalent model (b).



272 J.Q. Bao et al. / Engineering Fracture Mechanics 131 (2014) 269–281
stress r0 as shown in Fig. 1(a). r0 is referred to as confining stress and is positive when compressive. The injection point is
the center of the bi-wing fracture, and it is also the origin of the Cartesian coordinates used in this paper. The fracture width
w results from the action of the confining stress r0 and the fluid pressure pf. As the confining stress is uniform, the homo-
geneous model in Fig. 1(a) can be represented by its half model as shown in Fig. 1(b). Net pressure is defined as the fluid
pressure minus the confining stress, and it is denoted as p. In the equivalent model only net pressure p contributes to the
fracture width [17]. The theoretical model has two parts, which are the elastic response of the solid medium and the fluid
flow within the fracture.

2.1. Elastic response of the solid medium

The elastic response at any point x in Fig. 1(b) is governed by the equivalence condition and the constitutive law, of which
the equations are
r � r ¼ 0 ð1Þ
and
rðxÞ ¼ D : eðxÞ ð2Þ
In Eq. (1), r is the stress tensor and (r�) is the divergence operator. In Eq. (2), D is the elastic stiffness tensor of the solid
media, (:) is the double dot product operator between two tensors, and e is the strain tensor and equals the symmetric part of
the gradient of displacement u, i.e.,
e ¼ ½ruþ ðruÞT �=2 ð3Þ
In Eq. (3), (r) is the gradient operator, and superscript T indicates transpose.
The stress boundary condition can be expressed as
rðx;0Þ � n ¼ �pðx; tÞ x 6 lt ð4Þ
where n is the unit outward normal of the fracture, lt as shown in Fig. 1(b) is the half fracture length at moment t. The dis-
placement boundary condition in Fig. 1(b) is expressed as
uxð0; yÞ ¼ 0 ð5Þ
where ux is the displacement in x direction.
It is seen in Fig. 1(b) that at any moment t, we have
wðxÞ ¼ ½uyðxþÞ � uyðx�Þ� ð6Þ
where w(x) is the fracture width at point (x, 0), uy is the displacement in y direction, and x+ and x� are two points on the
fracture surface as shown in Fig. 1(b). These two points are actually the same point x(x, 0) before fracture tip reaches there.

In hydraulic fracturing fracture propagation is mode-I dominated, and the propagation criterion is
KI ¼ KIC ð7Þ
where KI is the mode-I stress intensity factor (SIF), and KIC is the fracture toughness of the solid medium.

2.2. Fluid flow within the fracture

The one-dimensional fluid flow within the fracture is modeled with lubrication theory, and its governing equation is
described by Poiseuille’s law [44], i.e.,
q ¼ � w3

12l
rpf ð8Þ
where q is the fluid flux, l is the fluid viscosity, and (r) is the gradient operator defined in x direction. It is seen in Eq. (8) that
the fluid flow is non-linearly dependent on the fracture width. For the case of uniform confining stress and zero fluid lag, pf in
Eq. (8) can be replaced by p. Therefore, we have
q ¼ � w3

12l
rp ð9Þ
Just like some semi-analytical solutions [19,22,23], Carter’s model [45] is used to simulate leak-off in the proposed
method. The leak-off model is cast as
gðx; tÞ ¼ 2Clffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � t0ðxÞ

p ð10Þ
where Cl is leak-off coefficient, and t0 is the fracture tip arrival time.
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The conservation of the incompressible fluid in the fracture leads to [46]
›w
›t
þr � qþ g ¼ 0 ð11Þ
where (r�) is the divergence operator defined in x direction. The boundary conditions for fluid flow in the fracture are
qðx ¼ 0þ; tÞ ¼ Q 0=2; qðx ¼ lt; tÞ ¼ 0 ð12Þ
The zero flux at the fracture tip in Eq. (12) originates from zero fracture width at the tip [22], which can be seen in Eq. (9).

3. Numerical method

3.1. Finite element analysis

Discretizing the equivalent model with finite elements as shown in Fig. 2, we can achieve a finite element equation for the
solid medium according to Eqs. (1)–(5) as
KuU ¼ F ð13Þ
where Ku is the global stiffness of the solid elements, U is the global nodal displacement, and F is the equivalent global nodal
force of the net pressure.

As only net pressure has contribution to F, Eq. (13) can be rewritten as
KuU � BP ¼ 0 ð14Þ
where P is a vector formed by the node net pressure, and matrix B transfers the net pressure into equivalent node forces.
Eq. (11) leads to its weak form [25] as
Z

lt

�rðdpÞ � qþ ðdpÞ @w
@t
þ ðdpÞg

� �
dlþ dpqjS ¼ 0 ð15Þ
where dp is any allowable testing function, and S is the collection of boundary conditions of flow. Therefore, a finite element
equation for fluid flow within the fracture is cast as
KwðWÞP þ L _W þ H ¼ 0 ð16Þ
where W is a vector formed by the widths of the nodes on the fracture surface, Kw is the assembly of the flux stiffness of the
fluid elements and it is a function of W, L is the assembly of the length stiffness of the fluid elements, and H concludes the
contributions of the fluid leak-off and the fluid injection.

Taking time integration with Eq. (16), we have
Z tnþ1

tn

½KwðWÞP þ L _Wþ H�dt ¼ 0 ð17Þ
Backward Euler scheme for time difference is used in this paper. So according to Eq. (17) we have
KwðWnþ1ÞPnþ1Dt � LðWnþ1 �WnÞ þ HDt ¼ 0 ð18Þ
Propagation
direction

Fracture tip
Potential fracture tip

Fig. 2. Discretization of the solid medium with finite elements.
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where Wn+1 and Pn+1 are the unknown fracture width and net fluid pressure at the n + 1-th step, respectively, Wn is the
known fracture width at the n-th step, and Dt is the time step between the n-th step and the n + 1-th step.

According to Eq. (6), Eq. (18) can be rewritten in an alternative way as
KwðUnþ1ÞPnþ1Dt þ L0 U f
nþ1 � U f

n

� �
þ HDt ¼ 0 ð19Þ
where Uf
nþ1 and U f

n are the displacements of the nodes on the fracture surface at the n + 1-th step and n-th step, respectively,

and L0 determines the contribution of node displacements on the fracture surface to fracture widths. Note that Uf
nþ1 is a

subset of Un+1, and U f
n is known a priori.

In every step, Eq. (18) leads to a new equation written as
KuUnþ1 � BPnþ1 ¼ 0 ð20Þ
Un+1 and Pn+1 can be obtained by solving the coupled Eqs. (19) and (20).

3.2. Condensation technique

A coupled scheme [17] is used in this paper, which means that the coupled Eqs. (19) and (20) are solved together. It is
seen that the number of unknowns of Eq. (19) is dependent on the nodes on the fracture surface. However, the number
of unknowns of Eq. (21) is dependent on the nodes in the whole model. A condensation technique [47] is introduced to
reduce the unknowns in the coupled equations.

Let Uo
nþ1 denote the node displacements at the n + 1-th step that have no contribution to fracture widths. Note that there

is no equivalent node force for nodes outside the fracture surface. Eq. (20) can be reorder and rewritten as
Koo Kof 0
K fo K ff �B0

� � Uo
nþ1

Uf
nþ1

Pnþ1

8><
>:

9>=
>; ¼ 0 ð21Þ
where sub-matrices Kof, Koo, Kfo, and Kff are extracted from Ku, and sub-matrix B0 is extracted from B. Eq. (21) is decomposed
into a condensation equation
K ff � K foK�1
oo Kof

� �
U f

nþ1 � B0Pnþ1 ¼ 0 ð22Þ
and a P-free equation
Kof Uf
nþ1 þ KooUo

nþ1 ¼ 0 ð23Þ
With the condensation technique, Eqs. (19) and (22) rather than Eqs. (19) and (20) can be solved at first in every step. The
Newton–Raphson algorithm [48] is used to solve these coupled non-linear equations. It is seen that the number of unknowns
in the coupled Eqs. (22) and (23) is only determined by the nodes on the fracture surface. With the removal of the displace-
ments that have no contribution to fracture widths from the coupled equations by the condensation technique, the proposed
method avoids solving large-scaled equations during the Newton–Raphson iterations in every step.

The prerequisite of the condensation technique is that Kof and Koo are independent of U. The condensation technique is
used whenever fractures propagate. Therefore, the condensation technique is applicable to other finite element methods that
are based on LEFM regardless of their measurements for model remeshing.

4. Some numerical aspects

A key aspect for the finite element method is the calculation of SIF. The M-integral method [49] is used in this paper to
calculate SIF. In the M-integral method, the approximation of KI in the plane strain model is
KI ¼
2E

1� v

Z
A

rij
@uc

i

@x1
þ rc

ij
@ui

@x1
� rc

mnemnd1j

� �
@v
@xj

dS�
Z

Se

vp
@uc

i

@x1
dL

� �
ð24Þ
where E is the elastic modulus, v is the Poisson’s ratio, domain A as shown in Fig. 3 is a set of elements around the fracture tip,
Se is a set of edges of the finite elements in set A and these edges coincide with the fracture surface shown in Fig. 3 with
dashed line, rij is the stress, ui is the local displacement, xj is the local coordinate, dij is the Kronecker delta, v is a scalar field,
emn is the strain, and rc

ij and uc
i are the auxiliary stress and displacement, respectively. Einstein summation convention is

used for repeated indices in Eq. (24).
The characteristic radius rc of the fracture tip is defined for the determination of domain A, and
rc ¼
ffiffiffiffiffiffiffi
Atip

q
ð25Þ



x1

x2

rc

θ

Se

ρ

Fig. 3. Domain for the interaction integral.
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where Atip is the summation of the area of the elements which share the node on the fracture tip. Elements having node(s) in
the circle as shown in Fig. 3 set up the domain A, and the radius of the circle equals rc. The scalar v is taken to have a value of
unity for nodes in the circle, and zero for nodes out of the circle [37].

The analytical solutions of the auxiliary displacement uc
i are [50]
uc
1 ¼

1
2G

ffiffiffiffiffiffiffi
q

2p

r
cos

h
2
½ð3� 4vÞ � cos h�

� �

uc
2 ¼

1
2G

ffiffiffiffiffiffiffi
q

2p

r
sin

h
2
½ð3� 4vÞ � cos h�

� � ð26Þ
where G is the shear modulus, v is the Poisson’s ration of the solid medium, and q and h are the polar coordinates as shown in
Fig. 3. The auxiliary stress can be calculated based on Eq. (26) and the elastic constitutive law.

A node-split technique [38] is used to remesh the model when fracture propagates. In the node-split method, the node at
the fracture tip as shown in Fig. 2 is split into two nodes when fracture propagates. If the fracture propagates along a straight
line, the node right ahead of the fracture tip becomes the new fracture tip when fracture propagates, and it is defined as the
potential fracture tip and shown in Fig. 2.

The convergence criterion for the Newton–Raphson iterations is
ew ¼ kW ðmÞ �W ðm�1Þk=kW ðmÞ �W ð0Þk 6 ew
tol ð27Þ
where ew is defined as the relative error of fracture width, kk is the 2-norm operator, W(i) (i = 0, m � 1, and m) is the fracture
width at the i_th iteration and superscript 0 indicates initial guess, and ew

tol is the specified tolerance for fracture widths and it
equals 1.0e�8 in this paper.

Dynamic time step Dt is used to ensure that in every step we have
KIC 6 KI 6 1:0þ es
tol

	 

KIC ; ð28Þ
where es
tol is the allowable tolerance for SIF, which is taken as 0.001 in this paper.

5. Verification and discussion

5.1. Verification

The coupled method can be verified by comparing its results with some semi-analytical solutions. The semi-analytical
solutions are dependent on dimensionless toughness Km, which is defined as [23]
Km ¼ 4
2
p

� �1=2 KICð1� v2Þ
E

E
12lQ0ð1� v2Þ

� �1=4

ð29Þ
The hydraulic fracturing propagation regime is toughness-dominated when Km is larger than 4.0, and it is viscosity-
dominated when Km is smaller than 1.0 [23].



Table 1
Material properties and operation parameters in the model.

Elastic modulus E 18000 MPa
Poisson’ s ratio t 0.2
Fracture toughness KIC 4.00 MPa m0.5 (large toughness, Km = 4.53)

0.20 MPa m0.5 (large viscosity, Km = 0.28)
Leak-off coefficient Cl 7.0e�5 m s1/2 (large toughness)

0.0 m s1/2 (large viscosity)
Dynamic viscosity l 7.98e�7 KPa s
Injection rate Q0 0.001 m2

/ s

x
y

0.10m

240m

24
0m

24
0m

E

A B

CD

15m

15m

Q0/2

(a) (b)

Fig. 4. The rectangle model (not scaled) (a) and its elements around the fracture propagation path.
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There are two examples in the verification, one for the toughness-dominated regime with leak-off and the other for the
viscosity-dominated regime without leak-off. The semi-analytical solutions are investigated by Bunger et al. [19] for the
toughness-dominated regime with leak-off, and by Adachi and Detournay [21] for the viscosity-dominated regime without
leak-off. The simulations were run on an in-house program coded with Fortran 90.

The material properties and operation parameters for the two examples are listed in Table 1.
The rectangle model for the two examples is shown in Fig. 4(a), where the initial horizontal fracture lies in the middle of

the left edge. In all the simulations, the maximum half fracture length is expected to be smaller than 15.0 m. Let le denote the
characteristic size of the elements on the fracture propagation path. It equals 0.06 m in the model. The elements around the
fracture propagation path are shown in Fig. 4(b). There are 4330 linear quad elements and 4437 nodes in the initial model.
The initial half fracture length equals 0.06 m, and its initial uniform net pressure equals 0.05 MPa. Edge AD is fixed in x direc-
tion, point E is fixed in y direction.

The dimensionless simulation time dt is defined as
dt ¼ t=te ð30Þ
where te means the simulation time when lt reaches 14.4 m in the numerical solutions, and it equals 104.65 and 16.31 s in
the two examples, respectively. Similarly, a dimensionless x coordinate n can be defined. n equals 0 at the injection point, and
equals 1 at the fracture tip. Some results of the numerical method with the condensation technique and the semi-analytical
solutions are shown in Fig. 5. The results include the net pressure at the injection point, the fracture width at the injection
point, the evolutions of half fracture length, and a net pressure profile.

The numerical method and the semi-analytical solutions share the same theoretical basis. It is seen in Fig. 5 that there are
small gaps between the numerical results and the semi-analytical solutions. There are two fundamental reasons for these
gaps. Firstly, the semi-analytical solutions correspond to limit situations. In the tough-dominated semi-analytical solution,
it is assumed that the fluid viscosity is zero, and the net fluid pressure is uniform. In the viscosity-dominated semi-analytical
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Fig. 5. Numerical results and semi-analytical solutions of net pressure at injection point (a), fracture width at injection point (b), half fracture length (c), and
net pressure profile (lt = 4.2 m) (d).
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Fig. 6. Overall program running time when the condensation technique is not used and le equals 0.04 m.
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solution, it is assumed that the fracture toughness is zero, and the net pressure at the fracture is negative and infinite.
Secondly, the models in the semi-analytical solutions are infinite, and the models in the numerical examples are finite.
The numerical results have good agreements with the semi-analytical solutions. This means that the numerical method with
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the condensation technique is verified. Both the numerical results and the semi-analytical solutions in Fig. 5(d) show that the
fracture tip behavior in the large viscosity example is more singular than that in the large toughness one.

5.2. Effects of the condensation technique

To discuss the effect of the condensation technique, two additional meshes are used to discretize the rectangle model of
the two examples in the verification sub-section, where le equals 0.04 m and 0.08 m, respectively. For the mesh with le equal
to 0.04 m, the initial model has 4650 quad elements and 4656 nodes, and for the mesh with le equal to 0.08 m, the initial
model has 4081 elements and 4192 nodes. The initial half fracture lengths in the two meshes are 0.04 m and 0.08 m, respec-
tively. Their initial net pressure is also 0.05 MPa. The two examples with the new meshes are simulated by the numerical
method with and without the condensation technique. For the simulations where the condensation technique is not used
and le equal 0.04 m, the overall program running time after each of the first 200 steps is shown in Fig. 6. It is seen in
Fig. 6 that much more computation cost is needed in the large viscosity example than that in the large toughness one. Similar
phenomena are also observed when le equals 0.06 m and 0.08 m.

The acceleration index is defined as the ratio of overall program running time for the simulations with the condensation
technique over that without the condensation technique. The evolutions of the acceleration index over the simulation time
in the two examples are plotted in Fig. 7. It is seen in Fig. 7 that the computation cost is reduced greatly if the condensation
technique is used. The condensation technique exceedingly accelerates the simulations when the simulation is on its early
stage. Although the acceleration indices decrease when fracture propagates, they gradually get stable and are far greater than
1.0. It is also seen in Fig. 7 that the condensation technique plays a more effective role in the large viscosity example than in
the large toughness example when the same mesh is used.

The relative error of half fracture length, i.e., el, is defined as
el ¼ jln � lsj=ls ð31Þ
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Fig. 7. Evolutions of a s in the two examples: (a) large toughness; (b) large viscosity.
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where ln and ls are half fracture lengths obtained by the numerical method and semi-analytical solutions at the same time,
respectively. el s in the large viscosity example are shown in Fig. 8. It is seen in Fig. 8 that for the same le and the simulation
time, the related errors induced by the method with the condensation technique are almost identical to those without the
condensation technique. The errors induced by the condensation technique are ignorable for the large viscosity example.
Similar situations are also found in the large toughness example.

The numbers of iterations needed to solve the non-linear coupled equations in the two examples are plotted in Fig. 9 for
their first 50 steps when the condensation technique is used. It is seen in Fig. 9 in most steps the solutions get convergent
within 6 steps regardless of the fracture propagation regime. It is also seen in Fig. 9 that the average number of iterations is
not sensitive to the mesh size. We found that the condensation technique has very limited effect on the number of iterations
in all the simulations. For example when the condensation technique is used and le equals 0.06 m, the average number of
iterations for the first 50 steps in the large toughness example equals 3.38, which is close to 3.34 when the condensation
technique is not used. This means the condensation technique does not deteriorate the structure of the coupled equations.
More iteration effort is needed on average in the large viscosity example than in the large toughness example. The reason is
that the fracture tip behavior in the large viscosity example is more singular.

Time steps were selected by trial and error to satisfy Eq. (28). No numerical instability occurred in the simulations. The
convergence tendencies of ew for some trail time steps in the large viscosity example are illustrated in Fig. 10 representa-
tively. These trial time steps have the same initial conditions and their le equals 0.08 m. It is seen in Fig. 10 that ew s drop
sharply with iterations for all the trial steps. The numerical method exhibits excellent robustness, and the condensation
technique does not worsen its convergence.

6. Conclusion

In this paper a coupled finite element method with a condensation technique is proposed for the simulation of hydraulic
fracturing. The condensation technique reduces the size of the coupled equations in the numerical method and lowers the
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computation cost. The numerical method with the condensation technique is verified by comparing its numerical results
with semi-analytical solutions. Simulations show that the condensation technique has noticeable acceleration effects, espe-
cially when the simulations are on the early stages. Although the large viscosity simulations need more computation efforts
than the large toughness ones in the proposed method, the condensation technique plays a more effective role for them. The
ill effects of the condensation technique on the simulation accuracy, stability, and convergence of the proposed method are
marginal and ignorable. The condensation technique can be easily implanted to other finite element simulators that are
based on linear elastic fracture mechanics.
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