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Abstract Using an upscaling approach based on small perturbation theory, the authors
have previously investigated the influence of local heterogeneities in matrix porosity on Darcy
flow and Fickian-type pore diffusion in the presence of linear non-equilibrium gas adsorption
Fathi and Akkutlu, J. Transp. Porous Med. 80, 281–3044 (2009). They identified non-triv-
ial macro-transport and -kinetics effects of the heterogeneity which significantly retard gas
release from the matrix and influence the ultimate gas recovery adversely. The work was a
unique fundamental approach for our understanding of gas production and sequestration in
unconventional reservoirs; however, it was simplified and did not consider (i) the presence
of nonlinear sorption kinetics and (ii) a transport mechanism for the adsorbed phase. In this
article, we incorporate the nonlinearity and surface diffusion effects of the adsorbed-phase
into their formulation and apply the same upscaling approach to further study the heteroge-
neity effects. Gas sorption involves the so-called Langmuir kinetics, which is reduced to the
well-known Langmuir isotherm in the equilibrium limit. It is found that the nonlinearity par-
ticipates into both macro-transport and -kinetics, promoting primarily the surface diffusion
effects. Whereas surface diffusion, although commonly ignored during modeling subsurface
phenomena, brings an intricate nature to the gas release dynamics. Through macro-transport
effect of the heterogeneity, it increases ultimate gas recovery and, through the macro-kinetics
effect of the heterogeneity, it significantly decreases the time needed to reach the ultimate
recovery. As the consequence of these effects, it is shown that the gas–matrix system prac-
tically does not reach the equilibrium adsorption limit during any stage of the matrix gas
release.
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List of Symbols
B0 Absolute matrix permeability (cm2)
C Free gas amount (mol/cc pore)
Cμ Adsorbed gas amount (mol/cc solid)
Cμs Maximum adsorbed gas amount (mol/cc solid)
D Molecular diffusion coefficient (cm2/s)
D Apparent diffusion coefficient (cm2/s)
Ds Surface diffusion coefficient (cm2/s)
E Potential energy (J)
g Average molar density of free gas (mol/cc)
K Partition (distribution) coefficient
k f Gas adsorption rate coefficient (1/s)
kr Gas desorption rate coefficient (1/s)
Rg Universal gas constant (J K−1 mol−1)
t Time coordinate(s)
T Temperature(K)
x Space coordinate (cm)
z Gas compressibility factor

Greek Letters
α Effective drift velocity (m/s)
φ Porosity
� Solid-to-bulk volume ratio
σ 2

f Variance of porosity fluctuations
μ Gas viscosity (kg/cm s)
λ Porosity correlation length (cm)
ν vibration frequency factor (1/s)

1 Introduction

Physical adsorption of gaseous phase fluid components in porous materials is commonly
associated with separation processes (McCabe et al. 1993). In physical sciences and modern
engineering fields, however, a large number of cases and applications exist where gas adsorp-
tion and its related phenomena find other important roles. In the energy sector, in particular,
they are often closely related to storage of natural gases and hydrogen. In addition, adsorption
is more frequently at the center of discussions involving natural gas in-place estimation and
production from thermally mature coal seams and organic-rich gas shale reservoirs (Ambrose
et al. 2010; Kang et al. 2010). These same natural gas resources are in parallel being con-
sidered as the places of CO2 sequestration, in this case using adsorption as the means of
trapping the greenhouse gases.

Separation, storage and entrapment are the consequences of certain gas molecules (with a
certain molecular weight, geometry, or polarity) being transferred to and held more strongly
on the porous surfaces than others. Hence, these processes involve intricate mass transfer
phenomena in porous media in addition to—often nonlinear—adsorption kinetics. Due to
short lengths of the characteristic pore size and low permeability, mass transport mecha-
nisms of the adsorbed and free gas could be considered mainly diffusive in these porous
materials.
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A vast literature exists on transport of free gas in porous media. It is well-recognized that
the free gas transport is due to viscous —Darcian—flow and molecular diffusion and that the
overall movement of the gas could be significantly retarded in the presence of adsorption.
If large enough voids are available, diffusive transport of free gas could take place in pores
and throats due to random movement and collisions of molecules from high- to low-concen-
tration regions, i.e., bulk (or pore) diffusion. With the decreasing pore sizes, however, and
depending on the pore pressure and temperature, molecular streaming (or Knudsen diffu-
sion) could develop as an additional transport mechanism indicating the dominant effect of
collisions between the gas and pore wall molecules. Surface and solid (or interstitial) dif-
fusion, on the other hand, are often associated with mass transport of the sorbed (adsorbed
and dissolved, respectively) phase. The latter transport mechanisms have been the subjects
of research for several decades, see Tiselius (1934, 1935) for the earliest discussion. Carman
and Raal (1951), Ash et al. (1963), Aylmore and Barrer (1966), Do and Wang (1998), and
Siemons et al. (2007) independently performed experiments using different gases to inves-
tigate the magnitude of gas transport mechanisms in microporous materials such as carbon
and coal. They found that the sorption rate in porous media cannot be accounted for only by
free gas diffusion and there must be an additional transport of the adsorbed-phase. In several
experiments, although a slow mechanism of transport, surface diffusion is quantified as the
dominant one, in some cases with a significantly larger contribution than viscous gas flow.

A simple approach to describe surface diffusion of the adsorbed-phase is to consider a net
adsorbed-phase mass flux as molecules hopping from one adsorption site to another adjacent
site due to thermal motion of the molecules under the influence of pore walls. Accordingly, the
adsorbed-phase transport is an activated diffusion that could be described as Fickian where
the flux is proportional to the adsorbed-phase concentration gradient with a diffusivity in
Arrhenius form: Ds = ν exp(−E/RT ). Hence, only the activated adsorbed molecules with
a desorption energy beyond the activation energy threshold could participate in the transport
process. This may be an appropriate approach to model the adsorbed-phase transport in geo-
logical formations such as coal and shale, since the local reservoir conditions are typically
below the capillary condensation threshold. When loading exceeds monolayer adsorption
limit, one needs to consider a hydrodynamic model such as the one earlier proposed by
Gilliland et al. (1958).

Solid diffusion represents the movement of small gas molecules inside the macromolecu-
lar openings of the solid phase that make up the matrix. As a transport mechanism, it has been
proposed to consider transient solid dissolution of the gases. It may be distinguished from
the surface diffusion by investigating changes in the rate of mass transport due to changes in
gas type. Solid diffusion rate decreases (while surface diffusion increases) as molecular size
of the gas becomes larger and heavier (Do 1998). Depending on the porous material, these
diffusive transport mechanisms could act individually or simultaneously (Sevenster 1959;
Thimons and Kissell 1973).

In this article, using a continuum approach, we consider the adsorbed-phase transport in
the presence of free gas in heterogeneous porous materials and show that the adsorbed-phase
transport could be significantly enhanced by local fluctuations in porosity. The enhancement
is beyond the levels that can be explained using the adsorbed-phase concentration gradient
arguments. Hence, the work brings new insight to previous experimental observations on
how a slow transport process such as surface diffusion can dominate the overall gas mass
transfer across porous materials.

In our formulation, the adsorbed-phase behavior is due to a mass balance equation that
includes non-linear adsorption kinetics. We consider that surface diffusion is the only mech-
anism of transporting the adsorbed phase and that its mass flux is proportional to the gradient
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of the adsorbed-phase concentration. The assumption of having monolayer gas adsorption is
held and the amount of gas as condensate and at a dissolved state is assumed to be negligible
in the solid. In addition, for clarity during the analysis, we consider the effects of bulk and
Knudsen diffusion combined in one effective pore diffusion which accounts for the overall
free gas transport.

Natural or synthetic porous materials involving adsorption-related phenomena are often
characterized by a network of relatively small pores. The common characteristics are large
internal surface area, providing enough adsorption sites to store significant amounts of fluid,
and very low matrix porosity and permeability. In some of these studies, the porous materials
have adjustable characteristics that could be a symmetry in pore sizes and homogeneity in
porosity, while in the others (such as natural gas resources and for CO2 sequestration) the
porous material is fairly large and heterogeneous in its petrophysical qualities. Particularly in
the latter case, the porous material shows complexity in pore structure and material content.
In this study, we consider such case in which the porosity of the material is considered hetero-
geneous with spatially-correlated random fluctuations. Complexity in structure and material
content of the porous material is due to a random porosity field that holds the assumption of
first and second-order stationarity.

The effect of locally fluctuating porosity field on the free and the adsorbed gas is analyzed
using small perturbations theory, a proven approach widely used in various other disciplines
where analysis of flow and multi-physics is necessary. A similar approach has been con-
sidered by the same authors recently to investigate the effects of fluctuations in porosity
and material content on the free gas phase transport in heterogeneous porous media (Fathi
and Akkutlu 2009). This recent work was inspired by Forster (1977), Gelhar (1993), and
L’Heureux (2004).

2 Local Governing Equations Describing Gas Behavior in Homogeneous Matrix

2.1 Kinetics of Gas Sorption in Porous Media

In this study, we introduce surface diffusion as the mechanism of transport for the adsorbed
phase under isothermal conditions. Previously, linear approaches for the adsorption kinetics
of fluids in porous media have been used by several authors, see for example, Brusseau et al.
(1991), Hu et al. (1995), Alvarado et al. (1998), and Fathi and Akkutlu (2009), assuming
that the adsorption rate is independent of the adsorbed gas concentration. However, when
single-component sorption rates are considered, it is more realistic to consider that adsorption
follows the so-called Langmuir kinetics. Koss et al. (1986) showed that the gas behavior in car-
bons may not be diffusion-limited, therefore it can be accurately modeled using rate expres-
sions. The nonlinear sorption kinetics behavior of gas has previously been studied by several
authors, see, for example, Srinivasan et al. (1995) and Schlebaum et al. (1999). These studies
have shown that the nonlinearity can influence diffusive processes. In essence, the nonlin-
earity could also be considered as the concentration-dependency of the diffusion coefficients
(Farooq and Ruthven 1991). In this study, we introduce the nonlinear sorption kinetics as the
rate of interchange between the adsorbed-phase and free gas using the following mass balance:

∂Cμ

∂t
= k f (Cμs − Cμ)C − kr Cμ (1)

C is the molar density of the free gas in moles per unit pore volume, whereas Cμ the molar
density of the adsorbed-phase in moles per unit solid volume. k f and kr are the adsorption
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and desorption rate coefficients, respectively. Cμs is maximum monolayer gas adsorption
of the matrix solid surface. If thermodynamic equilibrium is reached, Eq. 1 simplifies to the
well-known Langmuir equation:

Cμ = Cμs K C

1 + K C
(2)

Here, K = k f /kr is often referred to as the equilibrium partition (or, distribution) coefficient.

2.2 Conservation of Gas Mass in Porous Media

Both bulk diffusion and viscous flow are considered for the free gas transport in the matrix.
Consequently, local equations describing gas transport become:

φ
∂C

∂t
+ (1 − φ)

∂Cμ

∂t
= ∂

∂x

(
φ D

∂C

∂x

)
+ ∂

∂x

(
φC

B0

μ

∂p

∂x

)
+ ∂

∂x

[
(1 − φ) Ds

∂Cμ

∂x

]

(3)
∂Cμ

∂t
= kr

[
K (Cμs − Cμ)C − Cμ

]
(4)

Here, x–t are the space–time coordinates, φ the interconnected porosity, D(φ) the tortuos-
ity-corrected coefficient of molecular diffusion, B0 the absolute permeability of the porous
medium, p the pore pressure, and μ the dynamic gas viscosity. Note that the formulation
contains a diffusive transport term which is Fickian in nature. This roughly corresponds to
bulk (pore) diffusion as the mechanism of transport. The existence of other mechanisms (e.g.,
Knudsen diffusion) will not be considered in this work. The pressure is obtained converting
the molar density of the gas using lower order virial equation of state p ∼= RgT C + RgT XC2

with the parameter X representing the second virial coefficient. Previous sensitivity analysis
on ultimate gas recovery and concentration profiles (Fathi and Akkutlu 2009) showed that
the ideal gas assumption is safe in our case, so p ∼= RgT C is used to convert the gas molar
density to pore pressure.

According to this new formulation the resistance controlling adsorption dynamics is only
due to adsorbed-phase diffusion, i.e., surface diffusion, with the adsorbed-phase diffusivity
Ds . This indicates that, although the adsorbed gas molecules are always under the restric-
tive influence of the solid walls, the concentration gradient ∂Cμ/∂x may be high such that
significant surface fluxes are possible in the matrix (Yi et al. 2008, 2009). Next Eqs. 3–4 are
re-organized and written in the following form:

∂C

∂t
+ �

∂Cμ

∂t
= α1

∂C

∂x
+ D

∂2C

∂x2 + βα′ ∂C

∂x
+ βC

∂2C

∂x2 + α2
∂Cμ

∂x
+ �Ds

∂2Cμ

∂x2 (5)

∂Cμ

∂t
= kr

[
K (Cμs − Cμ)C − Cμ

]
(6)

Here, we introduce α1 = ∂(φD)
φ∂x as an effective drift velocity, reflecting changes in free gas

concentration due to a non-constant diffusivity with a gradient and α2 = ∂[(1 − φ)Ds]
φ∂x as

an effective drift velocity of adsorbed phase due to non-constant surface diffusion coefficient

with a gradient. In addition, we define α′ = ∂(φC)
φ∂x , β = B0 RgT/μ as the gas mobility, and

� = (1 − φ)/φ as the solid-to-bulk volume ratio.
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3 Gas Behavior in Heterogeneous Matrix

Consider a porous medium where medium heterogeneity is defined by a time-independent,
spatially fluctuating porosity field. The porous medium still maintains an average porosity
and absolute permeability. Application of the random porosity field, instead of random per-
meability, is more appropriate because the transport is mainly diffusive. Next the classical
perturbation theory was employed where porosity φ is defined in terms of its mean φ̄ and its
small fluctuation φ̃ such that φ = φ̄+φ̃. The latter is assumed to be Gaussian random number
of zero average around the mean porosity. Further, the assumption of first- and second-order
stationarity, i.e., mean and variance of porosity kept constant, is held with a well-defined
spatial covariance function. The dependent variables, transport and rate coefficients will be
affected by the random porosity field; therefore, they should also be considered as random
variables. We thus have

α1 = ᾱ1 + α̃1 α2 = ᾱ2 + α̃2 α′ = ᾱ′ + α̃′

C = C̄ + C̃ Cμ = C̄μ + C̃μ D = D̄ + D̃

Ds = D̄s + D̃s � = �̄ + �̃ K = K̄ + K̃

where a bar and a tilde over a quantity denote its average value and its fluctuations about
the mean, respectively. Note that all the random variables are dependent and cross-correlated
using cross correlations defined in Appendix B, Table 2. This means the porosity fluctua-
tions have the potential to generate variations in gas adsorption and desorption rates. This
is not only a reasonable but also an important consideration since porous media are often
mixtures of various materials exhibiting an intricate pore-network. Variations in the material
properties add to structurally complex nature of a porous medium, influencing gas retention
(adsorption) capacity. Substituting these expressions into the governing equations (5–6) and
taking the expectations of the equations, the mean equations for the free and adsorbed gas
are obtained as follows:

∂C̄

∂t
+ �̄

∂C̄μ

∂t
− D̄

∂2C̄

∂x2 − �̄D̄s
∂2C̄μ

∂x2 = R̄ (7)

∂C̄μ

∂t
= kr

[
K̄ C̄(Cμs − C̄μ) − C̄μ + (Cμs − C̄μ)K̃ C̃ − C̄ K̃ C̃μ − K̄ C̃μC̃

]
(8)

where we introduce R̄ as

R̄ = ᾱ1
∂C̄

∂x
+ βᾱ′ ∂C̄

∂x
+ ᾱ2

∂C̄μ

∂x
+ βC̄

∂2C̄

∂x2

+
∑

m=1,2

ξm∂mC̃

∂xm + β
α̃′∂C̃

∂x
− �̃∂C̃μ

∂t
+α̃2

∂C̃μ

∂x
+ D̄s�̃

∂2C̃μ

∂x2 + �̄D̃s
∂2C̃μ

∂x2 (9)

Here, for simplicity we defined ξ1 = α̃1 and ξ2 = D̃ in Eq. 9. First, second and third terms
on the right hand side of the equation are corrections to the drift velocities; the fourth term is
related to viscous transport, and the remaining terms indicate non-trivial cross-correlations
due to the fluctuating matrix porosity. Importantly, a series of auto- and cross-correlations
appear in the formulation, such as cross-correlations among the partition coefficient, free
gas and adsorbed-phase in Eq. 8, indicating the impact of local porosity fluctuations on the
adsorption kinetics and gas transport. Subtracting the obtained mean equations (7–8) from
the original ones (i.e., Eqs. 5 and 6 after inserting the definition of perturbed quantities), the
mean-removed equations are derived:
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∂C̃

∂t
+ �̄

∂C̃μ

∂t
− ᾱ1

∂C̃

∂x
− D̄

∂2C̃

∂x2 − βᾱ′ ∂C̃

∂x
− βC̄

∂2C̃

∂x2

−βC̃
∂2C̄

∂x2 − ᾱ2
∂C̃μ

∂x
− �̄D̄s

∂2C̃μ

∂x2 = R̃ (10)

∂C̃μ

∂t
+ kr C̃μ + kr K̄ C̄C̃μ = kr K̄

(
Cμs − C̄μ

)
C̃ + kr M (11)

where R̃ and M are defined as follows:

R̃ = −�̃
∂C̄μ

∂t
− �̃

∂C̃μ

∂t
+ �̃∂C̃μ

∂t
+ α̃1

∂C̄

∂x
+ α̃1

∂C̃

∂x
− α̃1∂C̃

∂x
+ D̃

∂2C̄

∂x2 + D̃
∂2C̃

∂x2

− D̃∂2C̃

∂x2 + βα̃′ ∂C̄

∂x
+ βα̃′ ∂C̃

∂x
− β

α̃′∂C̃

∂x
+ βC̃

∂2C̃

∂x2 − β
C̃∂2C̃

∂x2 + α̃2
∂C̃μ

∂x

+ α̃2
∂C̄μ

∂x
− α̃2∂C̃μ

∂x
+ �̄D̃s

∂2C̃μ

∂2x
+ �̄D̃s

∂2C̄μ

∂2x
+ �̃D̄s

∂2C̄μ

∂2x
+ �̃D̃s

∂2C̄μ

∂2x

− �̃D̃s
∂2C̄μ

∂2x
− �̄

D̃s∂
2C̃μ

∂2x
+ �̃D̄s

∂2C̃μ

∂2x
+ �̃D̃s

∂2C̃μ

∂2x
− D̄s

�̃∂2C̃μ

∂2x
(12)

M = Cμs

(
K̃ C̄ + K̃ C̃ − K̃ C̃

)
− C̄C̄μ K̃ − K̄ C̃μC̃ − C̄μ K̃ C̃ − C̄ K̃ C̃μ

+ K̃ C̃C̄μ + C̃μC̃ K̄ + C̃μ K̃ C̄ (13)

As stated earlier, the fluctuations are assumed to be Gaussian random numbers with zero

mean, (i.e., C̃ = C̃μ = D̃ = D̃s = K̃ = �̃ = α̃1 = α̃2 = α̃′ = 0); however, their auto– and

cross–correlations (e.g., α̃1α̃1 and α̃1 D̃) are non-trivial.
The assumption of small-perturbations was implemented. Accordingly, the porosity fluc-

tuations are small such that the terms including fluctuation correlations higher than second
order are neglected. Also, C̃(x, t = 0) = C̃μ(x, t = 0) = 0 are taken. The upscaled gov-
erning equations describing gas behavior in the heterogeneous matrix can be obtained by
substituting explicit expressions for the auto– and cross–correlation terms in the mean equa-
tions (7–8). We approached the problem by first finding the general solutions for the free
and adsorbed gas fluctuations, C̃(k, s) and C̃μ(k, s) in Fourier–Laplace domain. Next the
correlation terms, which appear in the mean equation (7), are obtained by multiplying the
proper spatial and temporal derivative of the concentration fluctuations (free or adsorbed)
with the fluctuating term and keeping only up to second-order terms. Further, the correlation
terms which appear in the mean equation (8) are obtained by multiplying the concentra-
tion fluctuations with the fluctuating term and keeping only up to second-order terms. The
auto- and cross-correlation terms include a set of convolution integral terms in Fourier–
Laplace domain. In order to evaluate these integrals, spatial correlation function is defined as

φ̃(x)φ̃(y) = σ 2
φ f (|x − y|). We assume Gaussian model for the spatial covariance of porosity,

characterized by correlation length λ: fx = exp
(−x2/2λ2

)
. The model can be written as

fQ = √
2πλ exp

(−Q2λ2/2
)

in the spectral domain. Complete details of the mathematical
procedure are presented in Appendix A. Details on the methodology and the correlation func-
tions can be found in Forster (1977), Gelhar (1993), L’Heureux (2004) and more recently in
Fathi and Akkutlu (2009).
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4 Upscaled Governing Equations for the Nonlinear Problem
with Surface Diffusion

The upscaled governing equations describing gas mass transport and nonlinear sorption kinet-
ics are given in Eqs. 73–74 in the Appendix A. Using the definitions of ᾱ1, ᾱ2, �̄, ᾱ′, and β,
in these upscaled equations and after simplifying and re-arranging, the following new form
of the upscaled equations are obtained:

φ̄
∂C̄

∂t
+ (1 − φ̄)

∂C̄μ

∂t
= ∂

∂x

(
φ̄Deff

∂C̄

∂x

)
+ ∂

∂x

(
φ̄C̄

B0

μ

∂ p̄

∂x

)

+ ∂

∂x

[
(1 − φ̄) D̄s,eff

∂C̄μ

∂x

]
+ Γtr (14)

∂C̄μ

∂t
= kr

[
K̄ (C̄μs − C̄μ)C̄ − (C̄μ + Γkn)

]
(15)

Here, importantly, new quantities appear reflecting the macro-effects of local porosity heter-
ogeneities. These are defined as follows:

Deff = D̄ − D′σ 2
φ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2D′ + βg′ + D̄ + βg

φ̄

D̄ + 2βg

1 + υ1�̄D̄s K̄

D̄ + 2βg

+ K̄υ1
[
1/φ̄(D′

s + D̄s) + D̄s
]

D̄ + 2βg + υ1�̄D̄s K̄

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(16)

Ds,eff = D̄s − σ 2
φ

�̄

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2D′ D′
s�̄ + (�̄D′

s − D̄s)

(
βg′ + D̄ + βg

φ̄

)

111
D̄ + 2βg + υ1�̄D̄s K̄

+
K̄υ1

[(
D′

s + D̄s

φ̄

)
(�̄D′

s − D̄s) + (�̄D′
s + D̄s)

2
]

111
D̄ + 2βg + υ1�̄D̄s K̄

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

Γtr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βg′ +
(

D̄ + βg

φ̄

)
+ K̄υ1

[
D′

s + (D̄s − D′
s)�̄

]

111
D̄ + 2βg + υ1 K̄ �̄D̄s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(
1 − υ2υ1C̄

)
φ̄σ 2

φ C̄μ0

+ K ′υ1
[
D′

s + (
D̄s − D′

s

)]
λ2 φ̄σ 2

φ C̄ (18)

Γkn =
(

υ1σ
2
φλ2C̄μ0 K ′

D̄ + 2βg + υ1 K̄ �̄D̄s

)(
1 + υ2υ1C̄ + 2�̄D̄s K̄ 2υ1C̄

D̄ + 2βg + υ1 K̄ �̄D̄s

)
(19)

In the above equations, we defined D′ = dD̄/dφ̄ >0, D′
s = dD̄s/dφ̄ >0 and K ′ =

d K̄/dφ̄ <0. In addition, assuming the free gas amount is replaced by its value averaged
over a large space domain L and time interval τ , we introduced g and g′ as follows:
¯̄C = ∫ τ

0

∫ L
0 C(x, t)dxdt/Lτ ≡ g and ∂ ¯̄C/∂φ = g′. C̄μ0 is the average initially adsorbed gas

amount that can be found using Langmuir equilibrium condition at t = 0. Finally, υ1 and υ2

are identified as new common parameters of our analysis:
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υ1 = Cμs − C̄μ

1 + K̄ C̄
(20)

υ2 = (1 − φ̄)D̄s K ′

φ̄λ2C̄μ0
(21)

These appear in the upscaled formulation purely due to the introduction of adsorption non-
linearity and surface diffusion, respectively.

5 Discussion

Based on the analytical part of our investigation, the following fundamental observations can
be made in regards to structure of the upscaled differential equations :

(1) Upscaling introduces clearly defined new terms into the governing equations. These are
the diffusive terms (involving apparent pore diffusivity Deff and apparent surface diffu-
sivity Ds,eff ) and the source/sink terms Γtr , and Γkn . The latter may also be considered
as decay terms during the gas release from the matrix because they depend on the gas
amounts in porous medium.

(2) Upscaled equations show gas amount dependency of pore and surface diffusion in the
presence of nonlinear adsorption kinetics. It also shows that change in the adsorbed
gas amount in time is related to the average of initially adsorbed gas amount C̄μ0. This
effect is known as loading effect, as discussed earlier by Do (1998).

(3) In the homogeneous limit Γ terms all disappear and the apparent diffusion coefficients
reduce to their homogeneous form due to the fact that the variance σ 2

φ of the porosity
field becomes nil. Hence, the upscaled equations (14–15) become identical with the
local equations (3–4), i.e., the homogeneous case.

(4) Nonlinearity in sorption kinetics and surface diffusion are represented in the upscaled
formulation by two new terms υ1 and υ2. Interestingly, when both υ1 and υ2 go to zero,
the equations are reduced to the form earlier reported by Fathi and Akkutlu (2009), i.e.,
the linear case.

Second part of the work involves numerical analysis of the upscaled governing equations
describing gas adsorption and transport in heterogeneous porous medium using a time-
implicit finite difference approach based on Newton method and using gas/matrix system
parameters given in Table 1. The data set includes the local (or measured) values of viscous
flow and diffusive transport, and kinetics parameters for a symmetric matrix block (slab) with
a half-length of 10.0 cm. In addition, the data set introduces a mildly heterogeneous matrix
porosity as a base-case for the sensitivity analysis. For the purpose, gas release from a matrix
is considered and presented as a one-dimensional initial/boundary value problem shown in
Fig. 1. Results reflecting the influence of porosity heterogeneity on gas release rates are
demonstrated using fractional gas recovery curves and comparing with the equivalent homo-
geneous case. Below, we take a closer look at the influence of local porosity fluctuations on
the system behavior in terms of macro-transport and -kinetics effects.

The sensitivity analysis on the ultimate gas recovery showed that the heterogeneity does
not have any significant impact on the effective pore and surface diffusivity values. Therefore
Deff and Ds,eff , can be safely reduced to their local mean values of D̄ and D̄s . We use the
local mean values for the latter quantities in our analysis.
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Table 1 Problem parameters for
the heterogeneous gas/matrix
system

Parameter Unit Value

φ̄ – 1.0E−2

σ 2
φ – 5.3E−7

C̄0 mol/cc 2.0E−3

kr 1/s 1.0E−5

K̄ – 0.1

C̄μs mol/cc 0.9

g mol/cc 2.028E−4

B0 cm2 4.934E−14

μg kg/cm s 2.0E−7

K ′ – −5.0E2

D̄ cm2/s 1.0E−3

D̄s cm2/s 2.5E−5

D′ cm2/s 3.3E−2

D′
s cm2/s 3.3E−5

g′ mol/cc −0.00835

λ cm 1.0

L cm 10.0

Rg kg cm2/(s2 K mol) 8.314E−4

T K 293.15

Fig. 1 A schematic showing the setup for numerical simulation. δxi = 10/500 cm and δti = 1.4 minutes for
i = 1, 2, . . . , 500, C(x, t = 0) = 2.0E−3, Cμ(x, t = 0) = 2.0E−4mol/cc

5.1 Macro-Kinetics Effects

Our numerical investigation based on the sensitivity of the upscaled quantities to gas release
dynamics showed that the expression of macro-kinetics, Γkn , i.e., the right-hand-side of
Eq. 19 can be simplified. The last term in second parenthesis takes small values during the
simulation so that it can be ignored for the analysis. Furthermore, substituting definition of
β, we obtain:
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Fig. 2 The effect of macro-kinetics on matrix gas release

Γkn ∼= υ1

⎛
⎜⎜⎝

K ′σ 2
φλ2C̄μ0

D̄ + 2B0 ¯̄p
μ

⎞
⎟⎟⎠
(
1 + υ1υ2C̄

) = υ1

[
NT hσ 2

φ C̄μ0

kr (1 + 2NPe)

] (
1 + υ1υ2C̄

)

= υ1
(
1 + υ1υ2C̄

)
Γkn,linear (22)

Here, Γkn,linear has previously been introduced by Fathi and Akkutlu (2009) in their study
on convection–diffusion with linear adsorption in the absence of adsorbed-phase transport.
Also, in their study they have introduced NT h and NPe as Thiele modulus and Peclet number,
respectively,

NT h = krλ
2

D̄

d K̄

dφ̄

NPe = B0 ¯̄p
μD̄

Note that quantity ¯̄p = RgT ¯̄C is average pore pressure across the matrix.
Γkn increases with the initially adsorbed gas amount and with the porosity variance.

Equation 22 includes the effects related to the sorption nonlinearity and the adsorbed-phase
transport through two new factors υ1 and υ2. In Fig. 2, the contributions of these factors are
investigated. The new contributions improve the ultimate recovery up to 93.7% and decrease
the time it takes to reach this recovery from more than 20 days (for linear case) to about
6 days. This is a significant improvement in gas production rate specifically due to macro
kinetics effect.

If we were to include into our numerical analysis only the nonlinearity in sorption kinet-
ics in the absence of surface diffusion, i.e., υ2 = 0, the macro-kinetics equation (22) then
simplifies to
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Γkn ∼= υ1Γkn,linear (23)

The dashed line in Fig. 2 shows this isolated effect. Clearly, the improvement in ultimate
recovery is primarily due to nonlinearity in sorption kinetics. In the presence of surface dif-
fusion, however, the gas release takes place at significantly higher rates. (e.g., 6 days for
93.7% recovery instead of 20 days in the absence of Ds), see the dotted line in the figure.
Note that, for the simulations, the input values of the diffusivities are D̄ = 1.0E−3 cm2/s
for the pore diffusion and D̄s = 2.5E−5 cm2/s for the surface diffusion. Given the fact that
the adsorbed-phase diffusivity has two orders of magnitude smaller value, the enhancement
in the gas release rate due to heterogeneity effect is a somewhat unexpected behavior. To
find the source of this significant impact on the gas release, we revisited the mathematical

formulation and back-traced the derivation of Γkn . In Eq. 8, it is the (Cμs −C̄μ)K̃ C̃ −C̄ K̃ C̃μ

terms that cause the impact on gas release, i.e., the nonlinearity effect (first term) and the
cross-correlations between partition coefficient, K , and the molar densities. In essence, we
theoretically observe new transport effects of heterogeneity in the presence of adsorbed-
phase. This may explain the earlier experimental observations suggesting that the gas release
cannot be accounted for only by free gas diffusion and there must be an additional transport
associated with the adsorbed phase. Figure 3 further confirms this fundamental observation
numerically by showing sensitivity of gas recovery to the changes in surface diffusivity val-
ues, for both homogeneous and heterogeneous cases. Figure 3 (top) shows the sensitivity to
the surface diffusion in the homogeneous matrix. In this case, obviously the surface diffusion
does not play any important role on the gas release dynamics. However, Figure 3 (middle),
with the heterogeneous case, shows significant improvement on the gas release rate. Further-
more, the gas release rate is also sensitive to the changes in the surface diffusivity. Figure 3
(bottom) compares the times required to reach 90% gas recovery for both homogeneous
and heterogeneous cases. It clearly shows that the adsorbed-phase transport is significantly
important in the heterogeneous system. We also note that, unlike the linear case presented
by Fathi and Akkutlu (2009), the contributions of nonlinearity and surface diffusion to the
overall macro-kinetics effect are not constant. Therefore macro-kinetics effect of heteroge-
neity is now dependent on the free and adsorbed gas amounts and hence varies in time and
space.

5.2 Macro-Transport Effect

Based on the sensitivity analysis, we omit last term in Eq. 18. Furthermore, typically φ̄g′ � g
condition is satisfied across the matrix block. Substituting the definitions of β and g in Eq. 18,
re-arranging and using the definitions of υ1 and υ2, the macro-transport effect Γtr is written
in the following simple form:

Γtr ∼= (
1 − υ1υ2C̄

) ( D̄

D̄ + 2βg
+ βg

D̄ + 2βg

)
φ̄σ 2

φ C̄μ0

= (
1 − υ1υ2C̄

)
⎛
⎜⎜⎝ 1

1 + 2B0 ¯̄p
D̄μ

+ 1

2 + D̄μ

B0 ¯̄p

⎞
⎟⎟⎠ φ̄σ 2

φ C̄μ0

= (
1 − υ1υ2C̄

) 1

1 + NPe/(1 + NPe)
φ̄σ 2

φ C̄μ0

= (
1 − υ1υ2C̄

)
Γtr,linear (24)
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Fig. 3 Effect of adsorbed-phase
transport in homogeneous (top)
and heterogeneous (middle)
porous media
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Fig. 4 Effect of macro-transport on matrix gas release

In this form, we can clearly identify the contribution of sorption nonlinearity and surface
diffusion as a correction term to the linear-case earlier obtained by Fathi and Akkutlu (2009).
Note that the bracket term in the last line of Eq. 24 is larger than unity, because K ′ < 0
taken; therefore Γtr > Γtr,linear. Also note that Γtr is dependent on the Peclet number and,
hence, increases with the matrix permeability. It does not disappear in the zero permeability
limit, however; instead, it changes with the average initial adsorbed gas amount, with the
porosity and with the porosity variance. If we were to include in our numerical analysis only
the nonlinearity in sorption kinetics in the absence of surface diffusion then Γtr in upscaled
equation (14) simplifies to

Γtr ∼= Γtr,linear (25)

suggesting that contribution of heterogeneity is a combined effect and by removing the sur-
face diffusion the sorption non-linearity effect in macro-transport diminishes too. Figure 4
shows the contribution of only the macro-transport term (i.e., Γtr �= 0 and Γkn = 0) on the
gas release by comparing the numerical results with respect to the linear case. Based on the
simulation, it is predicted that the ultimate gas recovery is increased slightly, to nearly 90%,
due to pure macro-transport effect. However, no significant improvement on the recovery
time is observed.

5.3 Sensitivity Analysis on Sorption Nonlinearity and Adsorbed-phase Transport

Auto- and cross– correlations in the mean equations (7–8) regarding the adsorbed-
phase transport and nonlinearity in sorption kinetics leads to common parameters υ2

and υ1 in the upscaled equations (14–15). In this section, sensitivity to these parame-
ters will be studied numerically using the gas release problem. In Fig. 5 the solid line
is related to gas release according to Table 1 based on the results with linear sorp-
tion kinetics of Fathi and Akkutlu (2009). Note that in this case υ1 = 0. The dotted
line corresponds to the heterogeneous base-case. The dashed line, on the other hand,
presents the heterogeneous case where the nonlinearity effect has been reduced 90%.
Two distinct observations can be made based on Fig. 5. First, comparison of the solid
line with dotted line shows significant improvement on gas release rate and ultimate
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Fig. 5 Sensitivity analysis of υ1
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Fig. 6 Sensitivity analysis of υ2

gas recovery due to presence of the adsorbed-phase transport and nonlinear sorption
kinetics.

Second, the nonlinearity in sorption kinetics, i.e., υ1, has a significant effect on the gas
release rate, while its effect on the ultimate gas recovery is minimal. It is also important
to notice that υ1 has a dynamic effect on gas recovery as it changes with the average
free gas and adsorbed-phase amounts (Eq. 20). υ2, on the other hand, i.e., the adsorbed-
phase transport effect, is a constant and does not change during the gas release. Figure 6
illustrates the sensitivity analysis of the υ2. As mentioned earlier υ2 appears in the up-
scaled formulation purely due to introduction of surface diffusion on gas release behavior
from the matrix. It is clear that both the rate of gas release and the ultimate gas recovery
decrease significantly as the adsorb-phase transport effect is decreased. These observations
also highlights the importance of the adsorbed-phase transport and its combined effects
with nonlinearity in sorption kinetics on the gas release dynamics in heterogeneous porous
medium.
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Fig. 7 Time evolution of matrix pressure versus adsorbed-phase molar densities at fixed locations of the
matrix block during the gas release. Free gas amount is shown in terms of matrix pore pressure at the fixed
points

5.4 Adsorption Equilibrium Limit

One can have a more insightful look at the importance of macro-kinetics effect in the equilib-
rium adsorption limit. Note that under the equilibrium conditions, we now have ∂C̄μ/∂t = 0,
thus:

K̄ (Cμs − C̄μ)C̄ − (
C̄μ + Γkn

) = 0 (26)

which gives the well-known expression for the Langmuir adsorption isotherm with an addi-
tional term purely related to the heterogeneity of the matrix block:

C̄μ = K̄ CμsC̄

1 + K̄ C̄
− Γkn

1 + K̄ C̄
(27)

Accordingly, the macro-kinetics effect of heterogeneity appears in equation (27) as a gas
trapping mechanism that leads to residual adsorbed gas in the matrix.

Figure 7 shows the time evolution of the estimated free gas versus adsorbed-phase den-
sities at two fixed locations of the matrix block (points 1 and 2) during the gas release. The
x-coordinate represents the pore pressure associated with the free gas at a location in the
matrix. In Fig. 7, first, the nonlinear sorption kinetics case with and without surface diffusion
is compared. The dotted blue line is obtained using Eqs. 3–4 for the homogeneous Lang-
muir kinetics, the solid black line corresponds to the heterogeneous case using the upscaled
equations (14–15), and the dashed red line is the heterogeneous case where adsorbed-phase
transport is ignored (i.e., D̄s = 0). Clearly, the isotherm is more like the homogeneous case
in the absence of surface diffusion with the only exception that the heterogeneity acts as
trapping mechanism. Consequently, at significantly large times, when the pore pressure goes
to zero, some adsorbed gas is trapped in the matrix. In the presence of surface diffusion, on
the other hand, the heterogeneity leads to accelerated transport of the adsorbed phase at high
pressures although its trapping effect persists at large times.

Figure 7 shows a significant difference between the numerically predicted isotherms at
different locations in the porous medium. At the outer boundary the derivative of the adsorbed
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Fig. 8 Comparison of the
pressure profiles at the inner and
outer boundaries
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phase with respect to the free gas is less than that at the inner boundary, in particular at early
times:

(
∂C̄μ

∂C̄

)
innerboundary

>

(
∂C̄μ

∂C̄

)
outerboundary

The effect can be discussed easily, if one considers the pressure transient at the inner and

outer boundary conditions. Using the definition of
∂C̄μ

∂C̄
, based on the Langmuir kinetics, we

have:

∂C̄μ

∂C̄
= K̄ Cμs

(1 + K̄ C̄)2 (28)

Here, for clarity in the discussion we ignored the derivative of the macro-kinetic term in
Eq. 28. Figure 8 shows that the free gas amount drops much faster at the inner boundary. This
means that the gradient must be larger at that location.

Figure 7 shows that, once the system reaches the residual gas saturation, the difference
between homogeneous and heterogenous case is not a function of free gas amount and it
reduces to the constant, i.e., Γ ′

kn . The residual adsorbed gas amount in nonlinear case is
much less than the linear case purely due to presence of surface diffusion. When the free gas
amount approaches to zero, i.e., C̄ → 0, Eq. 27 reduces to:

(
C̄μ

)
C̄=0 = Γ ′

kn = − (Γkn)C̄=0 = (−υ1Γkn,linear
)

C̄=0 (29)

substituting the definitions of υ1 and Γkn at C̄ = 0, and rearranging the equation leads to

Γ ′
kn = − CμsΓ

′
linear

1 − Γ ′
linear

(30)

where Γ ′
linear is defined as

Γ ′
linear = (Γlinear)C̄=0 = NT hσ 2

φ C̄μ0

kr (1 + 2NPe)
(31)
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6 Conclusion

In this article, gas flow, diffusive transport, and adsorption in heterogeneous porous media
with low permeability and porosity is investigated using a theoretical approach. Unlike pre-
vious theoretical works, the sorption rates are explicitly introduced to the mathematical
framework.

Random local variations in matrix pore structure is considered and their influence on
gas sorption and transport are investigated using small perturbations theory, a proven tech-
nique widely used in various other disciplines where analysis of multi-physics problems are
required in the presence of a priori fluctuations induced by non-uniform fields. In conclusion,
the homogenized gas–matrix system behavior can be described using the following upscaled
governing equations.

φ̄
∂C̄

∂t
+ (1 − φ̄)

∂C̄μ

∂t
= ∂

∂x

(
φ̄Deff

∂C̄

∂x

)
+ ∂

∂x

(
φ̄C̄

B0

μ

∂ p̄

∂x

)
+ ∂

∂x

[
(1 − φ) D̄s

∂C̄μ

∂x

]

+ φ̄σ 2
φ C̄μ0

1 + NPe/(1 + NPe)
(1 − υ1υ2C̄) (32)

∂C̄μ

∂t
= k f

(
Cμs − C̄μ

)
C̄ − kr C̄μ − NT h

1 + 2NPe
σ 2

φCμ0υ1(1 + υ1υ2C̄)

(33)

Further, it is found that the matrix heterogeneity defined by random porosity field gener-
ates non-trivial macro-transport and macro-kinetics effects on the system that includes well
known dimensionless numbers, i.e., Peclet number and Thiele modulus. It is also shown that
the heterogenous porosity field leads to a significant improvement in adsorbed-phase trans-
port when nonlinear sorption kinetics is considered, that can explain earlier experimental
observations suggesting significant adsorbed phase transport in microporous materials such
as carbon and coal (Carman and Raal 1951; Ash et al. 1963; Aylmore and Barrer 1966; Do
and Wang 1998; Siemons et al. 2007). Our upscaling approach clearly shows the importance
of initially adsorbed amount of gas on macro-transport and macro kinetics, known as the
loading effect on gas sorption and adsorbed-phase transport (Do 1998). The system behavior
is investigated numerically and it is found that macro–kinetics significantly increases the
gas release rate and macro–transport increases the ultimate gas recovery compared to the
case where adsorbed-phase transport is ignored. Most importantly, our theoretical investiga-
tion shows that the nonlinear gas dynamics does not allow the system to reach equilibrium
adsorption limit, even at large times.

Appendix A

Upscaling Approach Using Small Perturbation Theory

Space-Fourier and time-Laplace transform of the mean equations (7–8) are taken. This pro-
cess gives the following algebraic equations for the mean free gas and the adsorbed phase in
the Fourier–Laplace domain:
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(s + k2 D̄)C̄ks − C̄k,t=0 + (s�̄ + k2�̄D̄s)(C̄μ)ks − �̄(C̄μ)k,t=0 = R̄ks (34)

(C̄μ)ks =
(C̄μ)k,t=0 + kr

[
K̄ C̄(Cμs) − C̄μ + (Cμs − C̄μ)K̃ C̃ − C̄ K̃ C̃μ − K̄ C̃μC̃

]
ks

s + kr

(35)

where k is the wave number, s the Laplace transform variable, C̄k,t=0 and (C̄μ)k,t=0 are the
Fourier transform of the initial amounts of free and adsorbed gas respectively. Substituting
Eq. 35 into the Eq. 34 leads to the formal solution of the free gas mass in Fourier–Laplace
domain as follow:

C̄ks = Ĝ−1
ks R̄ks + Ĝ−1

ks Xks (36)

where Ĝks and Xks are defined as

Ĝks =
[

s + k2 D + �̄kr K̄ (s + k2 D̄s)Cμs

s + kr

]
ks

(37)

Xks = C̄k,t=0 +
(

�̄ − �̄(s + k2 D̄s)

s + kr

)
C̄μ(k,t=0)

− �̄kr (s + k2 D̄s)

s + kr

[
K̃ C̃(Cμs − Cμ) − K̄ C̄C̄μ − K̄ C̃μC̃ − C̄ K̃ C̃μ

]
ks

(38)

In order to find the equivalent expression for free gas fluctuation C̃ in Fourier–Laplace
domain, we use the mean-field approximation for the terms βC̄∂2C̃/∂x2 and βC̃∂2C̄/∂x2.
Assuming the average gas amount is replaced by its value averaged over a large space domain

L and time interval τ : ¯̄C = ∫ τ

0

∫ L
0 C(x, t)dxdt/Lτ ≡ g and ∂ ¯̄C/∂φ = g′. Equivalently, we

take C̄ks = g in Fourier–Laplace domain. In homogeneous porous media, ᾱ1, ᾱ2 and ᾱ′ are
defined as (L’Heureux 2004)

ᾱ1 ∼= D̃∂φ̃

∂x
−
(

D̄

φ̄

)
φ̃∂φ̃

∂x

ᾱ2 ∼= �D̃s∂φ̃

∂x
−
(

D̄s

φ̄

)
(1 − φ̃)∂φ̃

∂x

ᾱ′ ∼= C̃∂φ̃

∂x
−
(

C̄

φ̄

)
φ̃∂φ̃

∂x

These are already second order in porosity fluctuations; therefore, ᾱ1∂C̃/∂x ∼= 0 ,
ᾱ2∂C̃μ/∂x ∼= 0 and ᾱ′∂C̃/∂x ∼= 0 are taken. Next we apply Fourier–Laplace transform
to the perturbation equations (10–11):(

s + k2 D̄ + 2βgk2) C̃ks + (
�̄s + �̄Dsk2) C̃μks = R̃ks (39)

C̃μ,ks = kr K̄
(
Cμs − C̄μks

)
C̃ks(

s + kr + kr K̄ C̄ks
) + kr Mks(

s + kr + kr K̄ C̄ks
) (40)

Substituting Eq. 40 into Eq. 39 leads to the formal solution for C̃ks in Fourier–Laplace domain
as

C̃ks = G−1
ks R̃ks − Lks Mks (41)
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where Gks , and Lks is defined as follow

Gks =
[

s + (D̄ + 2βg)k2 + �̄kr K̄ (s + D̄sk2)(Cμs − C̄μ)ks

s + kr + kr K̄ C̄ks

]
(42)

Lks =
[

�̄kr (s + D̄sk2)

s + kr + kr K̄ C̄ks

]
G−1

ks (43)

In the space–time domain, the fluctuating free gas mass is given by the convolution integral

C̃ (x, t) =
t∫

0

∫
G−1 (x − x ′, t − t ′

)
R̃
(
x ′, t ′

)
dx ′dt ′

−
t∫

0

∫
L
(
x − x ′, t − t ′

)
M
(
x ′, t ′

)
dx ′dt ′

≡ G−1
x−x ′,t−t ′ ∗ R̃x ′,t ′ − Lx−x ′,t−t ′ ∗ Mx ′,t ′ (44)

Next we substitute Eq. 41 into Eq. 40. Now C̃μ can be expressed in space–time domain as
follows

C̃μ (x, t) =
t∫

0

∫
Ğ−1 (x − x ′, t − t ′

)
R̃
(
x ′, t ′

)
dx ′dt ′

−
t∫

0

∫
L̆
(
x − x ′, t − t ′

)
M
(
x ′, t ′

)
dx ′dt ′

≡ Ğ−1
x−x ′,t−t ′ ∗ R̃x ′,t ′ − L̆ x−x ′,t−t ′ ∗ Mx ′,t ′ (45)

Here, we introduced

Ğ−1
ks =

[
K̄ kr (Cμs − C̄μ)ks

s + kr + kr K̄ C̄ks

]
G−1

ks and L̆ks =
(−K̄ kr (Cμs − C̄μ)ks

s + kr + kr K̄ C̄ks
Lks − kr

s + kr + kr K̄ C̄ks

)

Having an analytical expressions for C̃ and C̃μ the cross-correlation terms in mean equations
(7–8) are obtained solving a series of convolution integrals. The summation term in Eq. 7
can be obtained by multiplying the proper spatial derivative of the molar density fluctuation
C̃ with the fluctuating transport term ξm(x) neglecting the third order porosity fluctuation
terms and taking the expectation.

∑
m=1,2

ξm ∂
m C̃

∂x
m =

∑
m=1,2

∂m G−1
x−x ′,t−t ′

∂xm ∗ ξm R̃x ′,t ′ −
∑

m=1,2

∂m Lx−x ′,t−t ′

∂xm ∗ ξm Mx ′,t ′ (46)

The rest of the cross correlation terms in Eq. 7 are obtained similarly using the definitions of
C̃ and C̃μ:

β
α̃′∂C̃

∂x
= ∂G−1

x−x ′,t−t ′

∂t
∗ βα̃′ R̃ − ∂Lx−x ′,t−t ′

∂t
∗ βα̃′M (47)

α̃2
∂C̃μ

∂x
= ∂Ğ−1

x−x ′,t−t ′

∂x
∗ α̃2 R̃ + ∂ L̆ x−x ′,t−t ′

∂x
∗ α̃2 M (48)
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�̃∂C̃μ

∂t
= ∂Ğ−1

x−x ′,t−t ′

∂t
∗ �̃R̃ + ∂ L̆ x−x ′,t−t ′

∂t
∗ �̃M (49)

D̄s�̃
∂2C̃μ

∂x2 = ∂2Ğ−1
x−x ′,t−t ′

∂x2 ∗ D̄s�̃R̃ + ∂2 L̆ x−x ′,t−t ′

∂x2 ∗ D̄s�̃M (50)

�̄D̃s
∂2C̃μ

∂x2 = ∂2Ğ−1
x−x ′,t−t ′

∂x2 ∗ �̄D̃s R̃ + ∂2 L̆ x−x ′,t−t ′

∂x2 ∗ �̄D̃s M (51)

The solution of the equations (46–51) are found, taking the space-Fourier and time-Laplace
transformation of them and dropping the third order terms in the porosity fluctuations:⎛
⎝ ∑

m=1,2

ξm ∂
m C̃

∂x
m

⎞
⎠

ks

= P1,ksC̄μ k,t=0 + P2,ksC̄ks + P3,ksC̄ks + P4,ksC̄μks + P5,ksC̄μks

+ P6,ksC̄μks − P7,ksC̄ks + P8,ksC̄ksC̄μks (52)(
β

α̃′∂C̃

∂x

)
ks

= Q1,ksC̄μ k,t=0 + Q2,ksC̄ks + Q3,ksC̄ks + Q4,ksC̄μks + Q5,ksC̄μks

+ Q6,ksC̄μks − Q7,ksC̄ks + Q8,ksC̄ksC̄μks (53)(
α̃2

∂C̃μ

∂x

)
ks

= T1,ksC̄μ k,t=0 + T2,ksC̄ks + T3,ksC̄ks + T4,ksC̄μks + T5,ksC̄μks

+ T6,ksC̄μks − T7,ksC̄ks + T8,ksC̄ksC̄μks (54)(
�̃∂C̃μ

∂t

)
ks

= U1,ksC̄μ k,t=0 + U2,ksC̄ks + U3,ksC̄ks + U4,ksC̄μks + U5,ksC̄μks

+ U6,ksC̄μks − U7,ksC̄ks + U8,ksC̄ksC̄μks (55)(
D̄s�̃

∂2C̃μ

∂x2

)
ks

= V1,ksC̄μ k,t=0 + V2,ksC̄ks + V3,ksC̄ks + V4,ksC̄μks + V5,ksC̄μks

+V6,ksC̄μks − V7,ksC̄ks + V8,ksC̄ksC̄μks (56)(
�̄D̃s

∂2C̃μ

∂x2

)
ks

= W1,ksC̄μ k,t=0 + W2,ksC̄ks + W3,ksC̄ks + W4,ksC̄μks + W5,ksC̄μks

+ W6,ksC̄μks − W7,ksC̄ks + W8,ksC̄ksC̄μks (57)

In order to evaluate these integrals, the porosity fluctuations φ̃ around the mean porosity φ̄

assumed to be Gaussian random variable with zero mean and variance σ 2
φ , and the spatial

correlation function defined as φ̃(x)φ̃(y) = σ 2
φ f (|x − y|). Then auto- and cross-covariances

appearing in the integrals can be defined using Gaussian correlation function, f (x) and fQ in
space–time and spectral domain, respectively. For instance, one can write the auto correlation
of the drift velocity α1 as follows

α̃1x α̃1x ′ = (
D′ + D̄/φ̄

)2
∂x φ̃(x)∂x ′ φ̃(x ′) = − (

D′ + D̄/φ̄
)2

σ 2
φ d2 f (x)/dx2 (58)

in space and time domain, that is ξQ1ξ−Q1 = α̃Q α̃−Q = (
D′ + D̄/φ̄

)2
σ 2

φ Q2 fQ in Fou-

rier space domain. Here, σ 2
φ is the variance of porosity and fQ = √

2πλ exp
(−Q2λ2/2

)
is

the Fourier transform of the porosity correlation function f (x) = exp
(−x2/2λ2

)
. We also
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defined D′ = dD̄/dφ̄ >0, D′
s = d D̄s/dφ̄ >0 and K ′ = d K̄/dφ̄ <0. Using defined auto-

and cross-covariances presented in Appendix B, Table 2, Eqs. 52–57) are obtained solving a
series of convolution integrals introduced in Appendix B, Table 3. In the table, Q is dummy
wave number label. Similar procedure is applied to obtain the explicit analytical solutions

for the cross-correlations in Eq. 8. We can express the cross-correlation terms K̃ C̃, K̃ C̃μ and

C̃C̃μ in Eq. 8 using the definitions of C̃ and C̃μ(Eqs. 44–45) in the following form

K̃ C̃ = G−1 ∗ K̃ R̃ − L ∗ K̃ M (59)

K̃ C̃μ = Ğ−1 ∗ K̃ R̃ − L̆ ∗ K̃ M (60)

C̃C̃μ = Ğ−1 ∗ G−1 ∗ R̃ R̃ − Ğ−1 ∗ L ∗ R̃M − L̆ ∗ G−1 ∗ R̃M + L̆ ∗ L ∗ M M (61)

Taking space–Fourier and time–Laplace transform of equations (59–61) leads to

(
K̃ C̃

)
ks

= S1ksC̄μ k,t=0 + S2ksC̄ks + S3ksC̄ks + S4ksC̄μks + S5ksC̄μks

+ S6ksC̄μks − S7ksC̄ks + S8ksC̄ksC̄μks (62)(
K̃ C̃μ

)
ks

= I 1ksC̄μ k,t=0 + I 2ksC̄ks + I 3ksC̄ks + I 4ksC̄μks + I 5ksC̄μks

+ I 6ksC̄μks − I 7ksC̄ks + I 8ksC̄ksC̄μks (63)(
C̃C̃μ

)
ks

= F1ksC̄μ k,t=0C̄ks (64)

which also includes a set of integral terms given in Appendix B, Table 4. Using conventional
approximations s = k = 0 in Q–dependent terms of the integrands, the following solu-
tions are obtained for the integrals defined in Tables 3 and 4 and inserted in Eqs. 52–57 and
Eqs. 62–64:

⎛
⎝ ∑

m=1,2

ξm ∂
m C̃

∂x
m

⎞
⎠

ks

=
(1 + K̄ C̄ks)σ

2
φ

D̄

φ̄
C̄μ k,t=0

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
(1 + K̄ C̄ks)σ

2
φ D′

(
2D′ + D̄

φ̄

)
(ik)2C̄ks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
(1 + K̄ C̄ks)σ

2
φ D′

s�̄

(
2D′ + D̄

φ̄

)
(ik)2C̄μks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

+
(1 + K̄ C̄ks)σ

2
φ D̄s

D̄

φ̄
(ik)2C̄μks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
σ 2

φ �̄K ′ D̄s
D̄

φ̄
(Cμs − C̄μks) C̄ks

λ2 [(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)
] (65)
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(
β

α̃′∂C̃

∂x

)
ks

=
(1 + K̄ C̄ks)σ

2
φβ(C ′ + C̄

φ̄
)ks C̄μ k,t=0

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
(1 + K̄ C̄ks)σ

2
φβ D′(C ′ + C̄

φ̄
)ks (ik)2C̄ks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
(1 + K̄ C̄ks)σ

2
φβ(C ′ + C̄

φ̄
)ks(�̄D′

s − D̄s) (ik)2C̄μks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
σ 2

φ �̄K ′ D̄sβ(C ′ + C̄

φ̄
)ks(Cμs − C̄μks) C̄ks

λ2 [(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)
] (66)

(
α̃2

∂C̃μ

∂x

)
ks

=
K̄σ 2

φ (Cμs − C̄μks)(D′
s + D̄s

φ̄
) C̄μ k,t=0

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
K̄σ 2

φ (Cμs − C̄μks)D′(D′
s + D̄s

φ̄
) (ik)2C̄ks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
K̄σ 2

φ (Cμs − C̄μks)(�̄D′
s − D̄s)(D′

s + D̄s

φ̄
) (ik)2C̄μks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

−
K̄ K ′�̄D̄sσ

2
φ (Cμs − C̄μks)

2(D′
s + D̄s

φ̄
) C̄ks

λ2 [(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)
]

+
K ′σ 2

φ (D′
s + D̄s

φ̄
)(Cμs − C̄μks) C̄ks

λ2 (1 + K̄ C̄ks
) (67)

(
D̄s�̃

∂2C̃μ

∂x2

)
ks

= − K̄σ 2
φ (Cμs − C̄μks)D̄s C̄μ k,t=0

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K̄σ 2
φ (Cμs − C̄μks)D′ D̄s (ik)2C̄ks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K̄σ 2
φ (Cμs − C̄μks)(�̄D′

s − D̄s)D̄s (ik)2C̄μks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)
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− K̄ K ′�̄D̄2
s σ 2

φ (Cμs − C̄μks)
2 C̄ks

λ2(1 + K̄ C̄ks)
[
(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

]

+ K ′σ 2
φ D̄s(Cμs − C̄μks) C̄ks

λ2 (1 + K̄ C̄ks
) (68)

(
�̄D̃s

∂2C̃μ

∂x2

)
ks

= − K̄σ 2
φ (Cμs − C̄μks)�̄D′

s C̄μ k,t=0

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K̄σ 2
φ (Cμs − C̄μks)D′�̄D′

s (ik)2C̄ks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K̄σ 2
φ (Cμs − C̄μks)(�̄D′

s + D̄s)�̄D′
s (ik)2C̄μks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

+ K̄ K ′�̄2 D̄s D′
sσ

2
φ (Cμs − C̄μks)

2 C̄ks

λ2(1 + K̄ C̄ks)
[
(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

]

− �̄K ′σ 2
φ D′

s(Cμs − C̄μks) C̄ks

λ2 (1 + K̄ C̄ks
) (69)

(
K̃ C̃

)
ks

= − K ′σ 2
φλ2(1 + K̄ C̄ks) C̄μ k,t=0

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K ′σ 2
φλ2(1 + K̄ C̄ks)D′ (ik)2C̄ks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K ′σ 2
φλ2(�̄D′

s − D̄s)(1 + K̄ C̄ks) (ik)2C̄μks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− �̄D̄s K ′2σ 2
φ (Cμs − C̄μks) C̄ks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)
(70)

(
K̃ C̃μ

)
ks

= − K̄σ 2
φ (Cμs − C̄μks)K ′λ2 C̄μ k,t=0

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K̄σ 2
φ (Cμs − C̄μks)D′K ′λ2 (ik)2C̄ks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K̄σ 2
φ (Cμs − C̄μks)K ′λ2(�̄D′

s − D̄s) (ik)2C̄μks

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

− K̄ K ′2�̄D̄sσ
2
φ (Cμs − C̄μks)

2 C̄ks

(1 + K̄ C̄ks)
[
(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)

]
(71)

(
C̃C̃μ

)
ks

= 2K̄ 2�̄D̄sσ
2
φ (Cμs − C̄μks)K ′λ2 C̄μ k,t=0C̄ks[

(1 + K̄ C̄ks)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μks)
]2 (72)
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Taking the inverse Laplace-Fourier transform of equatios (65–72)and substituting to the gov-
erning mean equations (7–8)after rearranging and simplifying the new governing equations
can be written as follow:

∂C̄

∂t
= −�̄

∂C̄μ

∂t
+ D̄

∂2C̄

∂x2 + �̄D̄s
∂2C̄μ

∂x2 + ᾱ1
∂C̄

∂x
+ βᾱ′ ∂C̄

∂x
+ ᾱ2

∂C̄μ

∂x
+ βC̄

∂2C̄

∂x2

+

⎛
⎜⎜⎜⎝

(1 + K̄ C̄)

[
D̄

φ̄
+ β(C ′ + C̄

φ̄
)

]
+ K̄ (Cμs − C̄μ)[(1 + �̄)D′

s + �̄D̄s ]
(1 + K̄ C̄)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μ)

⎞
⎟⎟⎟⎠ σ 2

φ C̄μ0

−

⎛
⎜⎜⎜⎝

(1 + K̄ C̄)

[
2D′ + D̄

φ̄
+ β(C ′ + C̄

φ̄
)

]
+ K̄ (Cμs − C̄μ)[(1 + �̄)D′

s + 1 + φ̄

φ̄
D̄s ]

(1 + K̄ C̄)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μ)

⎞
⎟⎟⎟⎠ D′σ 2

φ

∂2C̄

∂x2

−

⎛
⎜⎜⎜⎝

(1 + K̄ C̄)

[
2D′ D′

s�̄ + (�̄D′
s − D̄s )

(
D̄

φ̄
+ β(C ′ + C̄

φ̄
)

)]

(1 + K̄ C̄)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μ)

+
K̄ (Cμs − C̄μ)

[
(D′

s + D̄s
�̄

)(�̄D′
s − D̄s) + (�̄D′

s + D̄s )
2
]

(1 + K̄ C̄)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μ)

⎞
⎟⎟⎠ σ 2

φ

∂2C̄μ

∂x2

−

⎛
⎜⎜⎜⎝

(1+ K̄ C̄)�̄D̄s K ′(Cμs − Cμ)

[
D̄

φ̄
+β(C ′ + C̄

φ̄
)

]
+ K̄ (Cμs − C̄μ)2�̄D̄s K ′Cμs [(1 − �̄)D′

s + �̄D̄s ]
λ2(1 + K̄ C̄)

[
(1 + K̄ C̄)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μ)

]

+
K ′(Cμs − Cμ)(D′

s + D̄s
�̄

− �̄D′
s + D̄s)

λ2(1 + K̄ C̄)

⎞
⎟⎠ σ 2

φ C̄ (73)

∂C̄μ

∂t
= kr

[
K̄ C̄(Cμs − C̄μ) − C̄μ

]

− kr (Cμs − C̄μ)K ′σ 2
φλ2C̄μ0

(1 + K̄ C̄)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μ)

×
[

1 + �̄D̄s K ′(Cμs − C̄μ)C̄

(1 + K̄ C̄)Cμ0λ
2 + 2�̄D̄s K̄ 2(Cμs − C̄μ)C̄

(1 + K̄ C̄)(D̄ + 2βg) + �̄D̄s K̄ (Cμs − C̄μ)

]
(74)

Appendix B

See Tables 2, 3, 4.
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Table 2 Auto- and cross-correlations

�̃−Q α̃1Q = i
(
D′ + D̄/φ̄

)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
�̃−Q α̃2Q = i

(
D′

s + D̄s/φ̄
)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
�̃−Q D̃s Q = D′

sσ
2
φ

√
2πλ exp

(−Q2λ2/2
)

�̃−Q D̃Q = D′σ 2
φ

√
2πλ exp

(−Q2λ2/2
)

α̃1Q α̃1−Q = (
D′ + D̄/φ̄

)2
σ 2

φ Q2
√

2πλ exp
(−Q2λ2/2

)
α̃2Q α̃2−Q = (

D′
s + D̄s/φ̄

)2
σ 2

φ Q2
√

2πλ exp
(−Q2λ2/2

)
D̃−Q α̃1Q = −i D′ (D′ + D̄/φ̄

)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
D̃s−Q α̃1Q = −i D′

s

(
D′

s + D̄/φ̄
)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
D̃s−Q α̃2Q = −i D′

s

(
D′

s + D̄s/φ̄
)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
D̃−Q D̃Q = D′2σ 2

φ

√
2πλ exp

(−Q2λ2/2
)

D̃s−Q D̃s Q = D′2
s σ 2

φ

√
2πλ exp

(−Q2λ2/2
)

D̃−Q D̃s Q = D′ D′
sσ

2
φ

√
2πλ exp

(−Q2λ2/2
)

�̃−Q α̃′
Q = i

(
C ′ + C̄/φ̄

)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
�̃−Q�̃Q = σ 2

φ

√
2πλ exp

(−Q2λ2/2
)

�̃−Q K̃ Q = K ′σ 2
φ

√
2πλ exp

(−Q2λ2/2
)

K̃−Q α̃′
Q = i K ′ (C ′ + C̄/φ̄

)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
α̃′

Q α̃′−Q = (
C ′ + C̄/φ̄

)2
σ 2

φ Q2
√

2πλ exp
(−Q2λ2/2

)
α̃Q α̃′−Q = − (

C ′ + C̄/φ̄
) (

D′ + D̄/φ̄
)
σ 2

φ Q2
√

2πλ exp
(−Q2λ2/2

)
α̃2Q α̃′−Q = − (

C ′ + C̄/φ̄
) (

D′
s + D̄s/φ̄

)
σ 2

φ Q2
√

2πλ exp
(−Q2λ2/2

)
D̃Q α̃′−Q = −i D′ (C ′ + C̄/φ̄

)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
D̃s Q α̃′−Q = −i D′

s

(
C ′ + C̄/φ̄

)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
K̃−Q α̃1Q = i K ′ (D′ + D̄/φ̄

)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
K̃−Q α̃2Q = i K ′ (D′

s + D̄s/φ̄
)
σ 2

φ Q
√

2πλ exp
(−Q2λ2/2

)
K̃−Q D̃s Q = K ′ D′

sσ
2
φ

√
2πλ exp

(−Q2λ2/2
)
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Table 3 Examples of convolution integrals (reset of the integrals are defined similarly)

P1,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sξQm�̃−Q [i(k − Q)]m dQ

P2,ks = ∑
m,n=1,2

∫ 1
2π

G−1
k−Q sξQmξ−Qn [i(k − Q)]m (ik)ndQ

P3,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sβξQm α̃′−Q [i(k − Q)]m (ik)dQ

P4,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sξQm α̃2−Q [i(k − Q)]m (ik)dQ

P5,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q s�̄ξQm D̃s−Q [i(k − Q)]m (ik)2dQ

P6,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q s D̄sξQm�̃−Q [i(k − Q)]m (ik)2dQ

P7,ks = ∫ 1
2π

Lk−Q sCμsξQm K̃−Q [i(k − Q)] dQ

P8,ks = ∫ 1
2π

Lk−Q sξQm K̃−Q [i(k − Q)] dQ

Q1,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sβα̃′

Qm�̃−Q [i(k − Q)]m dQ

Q2,ks = ∑
m,n=1,2

∫ 1
2π

G−1
k−Q sβξQm α̃′−Qn [i(k − Q)]m (ik)ndQ

Q3,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sβ

2α̃′
Qm α̃′−Q [i(k − Q)]m (ik)dQ

Q4,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sβα̃′

Qm α̃2−Q [i(k − Q)]m (ik)dQ

Q5,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sβ�̄α̃′

Qm D̃s−Q [i(k − Q)]m (ik)2dQ

Q6,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sβ D̄s α̃′

Qm�̃−Q [i(k − Q)]m (ik)2dQ

Q7,ks = ∫ 1
2π

Lk−Q sCμsβα̃′
Qm K̃−Q [i(k − Q)] dQ

Q8,ks = ∫ 1
2π

Lk−Q sβα̃′
Qm K̃−Q [i(k − Q)] dQ

T1,ks = ∑
m=1,2

∫ 1
2π

Ğ−1
k−Q s α̃2Qm�̃−Q [i(k − Q)]m dQ

T2,ks = ∑
m,n=1,2

∫ 1
2π

Ğ−1
k−Q sξQm α̃2−Qn [i(k − Q)]m (ik)ndQ

T3,ks = ∑
m=1,2

∫ 1
2π

Ğ−1
k−Q sβα̃2Qm α̃′−Q [i(k − Q)]m (ik)dQ

T4,ks = ∑
m=1,2

∫ 1
2π

Ğ−1
k−Q s α̃2Qm α̃2−Q [i(k − Q)]m (ik)dQ

T5,ks = ∑
m=1,2

∫ 1
2π

Ğ−1
k−Q s�̄α̃2Qm D̃s−Q [i(k − Q)]m (ik)2dQ

T6,ks = ∑
m=1,2

∫ 1
2π

Ğ−1
k−Q s D̄s α̃2Qm�̃−Q [i(k − Q)]m (ik)2dQ

T7,ks = ∫ 1
2π

L̆k−Q sCμs α̃2Qm K̃−Q [i(k − Q)] dQ

T8,ks = ∫ 1
2π

L̆k−Q s α̃2Qm K̃−Q [i(k − Q)] dQ
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Table 4
S1,ks = ∫ 1

2π
G−1

k−Q s K̃ Qm�̃−QdQ

S2,ks = ∑
m=1,2

∫ 1
2π

G−1
k−Q sξQm K̃−Q(ik)mdQ

S3,ks = ∫ 1
2π

G−1
k−Q sβ K̃ Qm α̃′−Q(ik)dQ

S4,ks = ∫ 1
2π

G−1
k−Q s K̃ Qm α̃2−Q(ik)dQ

S5,ks = ∫ 1
2π

G−1
k−Q s�̄K̃ Qm D̃s−Q(ik)2dQ

S6,ks = ∫ 1
2π

G−1
k−Q s D̄s K̃ Qm�̃−Q(ik)2dQ

S7,ks = ∫ 1
2π

Lk−Q sCμs K̃ Qm K̃−QdQ

S8,ks = ∫ 1
2π

Lk−Q s K̃ Qm K̃−QdQ

I1,ks = ∫ 1
2π

Ğ−1
k−Q s K̃ Qm�̃−QdQ

I2,ks = ∑
m=1,2

∫ 1
2π

Ğ−1
k−Q sξQm K̃−Qn(ik)mdQ

I3,ks = ∫ 1
2π

Ğ−1
k−Q sβ K̃ Qm α̃′−Q(ik)dQ

I4,ks = ∫ 1
2π

Ğ−1
k−Q s K̃ Qm α̃2−Q(ik)dQ

I5,ks = ∫ 1
2π

Ğ−1
k−Q s�̄K̃ Qm D̃s−Q(ik)2dQ

I6,ks = ∫ 1
2π

Ğk−Q s D̄s K̃ Qm�̃−Q(ik)2dQ

I7,ks = ∫ 1
2π

L̆k−Q sCμs K̃ Qm K̃−Q(ik)2dQ

I8,ks = ∫ 1
2π

L̆k−Q s K̃ Qm K̃−Q(ik)2dQ
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